Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-16T05:48:40.223Z Has data issue: false hasContentIssue false

Microstrip antenna miniaturization with fractal EBG and SRR loads for linear and circular polarizations

Published online by Cambridge University Press:  23 June 2016

Mohammad Sadegh Sedghi*
Affiliation:
Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Mohammad Naser-Moghadasi
Affiliation:
Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Ferdows B. Zarrabi
Affiliation:
Young Researchers and Elite Club, Babol Branch Islamic Azad University, Babol, Iran
*
Corresponding author: M.S. Sedghi Email: m.sadegh62@gmail.com

Abstract

In this paper, combination of electromagnetic band gap (EBG) and split-ring resonator (SRR) loads with fractal formation for miniaturization of microstrip antenna is noticed. Here two different shapes of antenna have been studied with two well-known metamaterial structures as parasitic elements. A conventional microstrip antenna, which is surrounded by four EBG unit cells, is chosen as the first antenna. It has an effective resonance at 2.5. The Minkowski fractal method is applied to EBG unit cells in this stage. The Minkowski fractal structure is implemented for accession of effective capacitance in EBG unit cells. The second antenna frequencies are 2.5 and 5.9 GHz. It contains a slot structure with four SRRs, used for making parasitic elements and for achieving multi-band characteristic. The fractal method is used to improve the inductance of SRR structure by increasing the effective length of microstrip line. At this stage, the applied fractal structure has been modified, so that the frequency of wireless application could be achieved. In the last step, by some changes in feed line of the slot antenna, circular polarization (CP) is obtained for the second antenna, which shows that SRR load can be helpful for making the CP.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Boroomandisorkhabi, B.; Sadeghzadeh, R.A.; Zarrabi, F.B.; Ghahramani, E.: A novel UWB circular CPW antenna with triple notch band characteristics, in Antennas and Propagation Conf. (LAPC), Loughborough, 2013, 637640.Google Scholar
[2] Boney, M.; Abdul Rahim, S.K.; Dewan, R.; Muhammad Sa'ad, B.: Dual band trapezoidal antenna with partial ground and meander line feed for GPS and WiMAX applications. Microw. Opt. Technol. Lett., 56 (2014), 497502.Google Scholar
[3] Choe, H.; Lim, S.: Ultra wideband compact U-shaped antenna with inserted narrow strip and inverted T-shaped slot. Microw. Opt. Technol. Lett., 56 (10) (2014), 22652269.Google Scholar
[4] Rahimi, M.; Zarrabi, F.B.; Ahmadian, R.; Mansouri, Z.; Keshtkar, A.: Miniaturization of antenna for wireless application with difference metamaterial structures. Prog. Electromag. Res., 145 (2014), 1929.Google Scholar
[5] Lee, B.; Harackiewicz, F.J.: Miniature microstrip antenna with a partially filled high-permittivity substrate. IEEE Trans. Antennas Propag., 50 (8) (2002), 11601162.Google Scholar
[6] Wang, X.-Y.; Yang, G.-M.: Dual frequency and dual circular polarization slot antenna for BeiDou navigation satellite system applications. Microw. Opt. Technol. Lett., 56 (10) (2014), 22222225.Google Scholar
[7] Xiao, S.; Wang, B.-Z.; Shao, W.; Zhang, Y.: Bandwidth-enhancing ultralow-profile compact patch antenna. IEEE Trans. Antennas Propag., 53 (11) (2005), 34433447.Google Scholar
[8] Borja, C.; Romeu, J.: On the behavior of Koch island fractal boundary microstrip patch antenna. IEEE Trans. Antennas Propag., 51 (6) (2003), 12811291.Google Scholar
[9] Deng, S.-L.; Li, R.; Xie, J.-J.; Yin, Y.-Z.: Triple-band compact monopole antenna with modified SS-CML units loading. Microw. Opt. Technol. Lett., 56 (1) (2014), 152158.CrossRefGoogle Scholar
[10] Kim, S.-H.; Nguyen, T.T.; Jang, J.-H.: Reflection characteristics of 1-D EBG ground plane and its application to a planar dipole antenna. Prog. Electromag. Res., 120 (2011), 5166.Google Scholar
[11] Mohajer-Iravani, B.; Ramahi, O.M.: Wideband circuit model for planar EBG structures. IEEE Trans. Adv. Packag., 33 (1) (2010), 169179.Google Scholar
[12] Zhang, J.-C.; Yin, Y.-Z.; Ma, J.-P.: Frequency selective surfaces with fractal four legged elements. Prog. Electromag. Res. Lett., 8 (2009), 18.Google Scholar
[13] Li, D.; Mao, J.-F.: A Koch-like sided fractal bow-tie dipole antenna. IEEE Trans. Antennas Propag., 60 (2012), 22422251.Google Scholar
[14] Oloumi, D.; Ebadi, S.; Kordzadeh, A.; Semnani, A.; Mousavi, P.; Gong, X.: Miniaturized reflectarray unit cell using fractal-shaped patch-slot configuration. IEEE Antennas Wireless Propag. Lett., 11 (2012), 1013.Google Scholar
[15] Mahatthanajatuphat, C.; Akkaraekthalin, P.; Saleekaw, S.; Krairiksh, M.: A bidirectional multiband antenna with modified fractal slot fed by CPW. Prog. Electromag. Res., 95 (2009), 5972.Google Scholar
[16] Chen, H.-M.; Chiu, K.-Y.; Lin, Y.-F.; Yeh, S.-A.: Circularly polarized slot antenna design and analysis using magnetic current distribution for RFID reader applications. Microw. Opt. Technol. Lett., 54 (9) (2012), 20162023.Google Scholar
[17] Ojaroudi, Y.; Ojaroudi, N.; Ghadimi, N.: Circularly polarized microstrip slot antenna with a pair of spur-shaped slits for WLAN applications. Microw. Opt. Technol. Lett., 57 (3) (2015), 756759.Google Scholar
[18] Chiang, M.-J.; Hung, T.-F.; Bor, S.-S.: Dual-band circular slot antenna design for circularly and linearly polarized operations. Microw. Opt. Technol. Lett., 52 (12) (2010), 27172721.Google Scholar
[19] Kumar, A.; Gautam, A.K.; Kanaujia, B.K.: An annular-ring slot antenna for CP operation. Microw. Opt. Technol. Lett., 55 (6) (2013), 14181422.Google Scholar
[20] Ha, J.; Kwon, K.; Lee, Y.; Choi, J.: Hybrid mode wideband patch antenna loaded with a planar metamaterial unit cell. IEEE Trans. Antennas Propag., 60 (2) (2012), 11431147.Google Scholar
[21] Park, J.-H.; Ryu, Y.-H.; Lee, J.-G.; Lee, J.-H.: Epsilon negative Zeroth-order resonator antenna. IEEE Trans. Antennas Propag., 55 (12) (2007), 37103712.Google Scholar
[22] Yang, F.; Rahmat-Samii, Y.: Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications. IEEE Trans. Antennas Propag., 51 (2003), 29362946.Google Scholar
[23] Krishna, R.; Kumar, R.: Design of ultra wideband trapezoidal shape slot antenna with circular polarization. Int. J. Electron. Commun., 67 (12) (2013), 10381047.Google Scholar
[24] Kuhestani, H.; Rahimi, M.; Mansouri, Z.; Zarrabi, F.B.; Ahmadian, R.: Design of compact patch antenna based on metamaterial for WiMAX applications with circular polarization. Microw. Opt. Technol. Lett., 57 (2014), 357360.CrossRefGoogle Scholar
[25] Rahimi, M.; Keshtkar, A.; Zarrabi, F.B.; Ahmadian, R.: Design of compact patch antenna based on zeroth-order resonator for wireless and GSM applications with dual polarization. Int. J. Electron. Commun., 69 (1) (2015), 163168.Google Scholar
[26] Nguyen, D.L.; Paulson, K.S.; Riley, N.G.: Reduced-size circularly polarised square microstrip antenna for 2.45 GHz RFID applications. IET Microw. Antennas Propag., 6 (1) (2012), 9499.Google Scholar
[27] Zhu, J.; Antoniades, M.A.; Eleftheriades, G.V.: A compact tri-band monopole antenna with single-cell metamaterial loading. IEEE Trans. Antennas Propag., 58 (4) (2010), 10311038.Google Scholar
[28] Selvanayagam, M.; Eleftheriades, G.V.: A compact printed antenna with an embedded double-tuned metamaterial matching network. IEEE Trans. Antennas Propag., 58 (7) (2010), 23542361.Google Scholar
[29] Oh, J.; Sarbandi, K.: Low profile, miniaturized, inductively coupled capacitively loaded monopole antenna. IEEE Trans. Antennas Propag., 60 (3) (2012), 12061213.Google Scholar
[30] Segovia-Vargas, D.; Herraiz-Martinez, F.J.; Ugarte-Munoz, E.; Garcia-Munoz, L.E.; Gonzalez-Posadas, V.: Quad-frequency linearly-polarized and dual-frequency circularly-polarized microstrip patch antennas with CRLH loading. Prog. Electromag. Res., 133 (2013), 91115.Google Scholar
[31] Dong, Y.; Toyao, H.; Itoh, T.: Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators. IEEE Trans. Antennas Propag., 60 (2) (2012), 772785.Google Scholar
[32] Ouedraogo, R.O.; Rothwell, E.J.; Diaz, A.R.; Kazuko, F.; Temme, A.: Miniaturization of patch antennas using a metamaterial-inspired technique. IEEE Trans. Antennas Propag., 60 (5) (2012), 21752182.Google Scholar