Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-21T14:29:31.208Z Has data issue: false hasContentIssue false

Metamaterial inspired DNG superstrate for performance improvement of microstrip patch antenna array

Published online by Cambridge University Press:  10 January 2018

Chirag Arora*
Affiliation:
KIET Group Of Institutions, Ghaziabad, UP, India
Shyam S. Pattnaik
Affiliation:
National Institute of Technical Teachers’ Training and Research, Chandigarh, India
Rudra Narayan Baral
Affiliation:
IMS Engineering College, Ghaziabad, UP, India
*
Corresponding author: C. Arora Email: c_arora2002@yahoo.co.in

Abstract

To utilize the manipulation of wave properties by metamaterials, in this paper, a microstrip-fed patch antenna array, loaded with metamaterial superstrate, has been proposed. Under unloaded conditions, the conventional patch antenna array resonates at IEEE 802.16a 5.8 GHz Wi-MAX band with gain of 4.31 dBi and bandwidth of 425 MHz, whereas when each patch of this array is loaded with a metamaterial superstrate, composed with the pair of circular split ring resonators and wire strips, gain and bandwidth approaches to 11.9 dBi and 685 MHz, respectively, which corresponds to gain improvement by 7.6 dBi and bandwidth enhancement of 260 MHz. The proposed antenna is fabricated and tested to compare simulated and measured results. A good compliance is observed between these two results. Equivalent circuit model of the composite structure has been developed and analyzed.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Gupta, S.; Kumar, S.: Design and analysis of compact and broadband high gain microstrip patch antennas, in 2014 Communication and Networking Conf., IEEE, India, 2014, 1115.CrossRefGoogle Scholar
[2]Sethi, W.T., Vettikalladi, H., Minhas, B.K.; Alkanhal, M.A.: High gain and wide-band aperture-coupled microstrip patch antenna with mounted horn integrated on FR4 for 60 GHz, in 2013 Wireless Technology and Applications Symp., IEEE, Malaysia, 2013, 359362.CrossRefGoogle Scholar
[3]Duan, Z.S., Qu, S.B., Wu, Y.; Zhang, J.Q.: Wide bandwidth and broad beam width microstrip patch antenna. Electron. Lett., 45 (5) (2009), 249250.CrossRefGoogle Scholar
[4]Singh, V.K.: Ka-band micro-machined microstrip patch antenna. IET Microw. Antennas Propag., 4 (3) (2010), 316323.CrossRefGoogle Scholar
[5]Islam, M.A.; Karmakar, N.C.: A 4 × 4 Dual polarized mm-wave ACMPA array for a universal mm-wave chipless RFID tag reader. IEEE Trans. Antennas Propag., 63 (4) (2015), 16331640.CrossRefGoogle Scholar
[6]Kishore, K.V., Rajesh, G.S., Kumar, V.; Srinivasulu, P.: Design of 0.71λ, spacing 8-element microstrip patch antenna linear array for 0.43 GHz wind profiling radar, in 2014 Emerging Technology Trends in Electronics, Communication and Networking Conf. (ET2ECN), IEEE, India, 2014, 16.CrossRefGoogle Scholar
[7]Kovitz, J.M.; Samii, Y.R.: Using thick substrates and capacitive probe compensation to enhance the bandwidth of traditional CP patch antennas. IEEE Trans. Antennas Propag., 62 (10) (2014), 49704979.CrossRefGoogle Scholar
[8]Manteghi, M.: Wideband microstrip patch antenna on a thick substrate, in 2008 Antennas and Propagation Symp., (AP-S), IEEE, San Diego, 2008, 14.CrossRefGoogle Scholar
[9]Row, J.S.; Hua, C.: A simple impedance-matching technique for patch antennas fed by coplanar microstrip line. IEEE Trans. Antennas Propag., 62 (10) (2005), 49704979.Google Scholar
[10]Chow, Y.L.; Wan, K.L.: Miniaturizing patch antenna by adding a shorting pin near the feed probe – a folded monopole equivalent, in 2002 Antennas and Propagation Society Int. Symp., IEEE, China, 2002, 69.Google Scholar
[11]Tang, X., Wong, H., Long, Y., Xue, Q.; Lau, K.L.: Circularly polarized shorted patch antenna on high permittivity substrate with wideband, IEEE Trans. Antennas Propag, 60 (3) (2012), 158815892.CrossRefGoogle Scholar
[12]Fukusako, T.; Nakano, T.: A compact patch antenna using artificial ground structure with high permittivity substrate, in 2015 Antennas and Propagation in Wireless Communications Conf. (APWC 2015), IEEE, Turin, 2015, 15481549.CrossRefGoogle Scholar
[13]Sharma, K., Upadhyay, D.K.; Parthasarathy, H.: Modified circular-shaped microstrip patch antenna, in 2015 Computational Intelligence & Communication Technology Conf., IEEE, India, 2015, 397399.CrossRefGoogle Scholar
[14]Rao, N.; Kumar, D.V.: Gain and bandwidth enhancement of a microstrip antenna using partial substrate removal in multiple-layer dielectric substrate, in 2011 Progress In Electromagnetics Research (PIER) Symp., China, 2011, 15851589.Google Scholar
[15]Mittra, R., Li, Y.; Yoo, K.: A comparative study of directivity enhancement of microstrip patch antennas with using three different superstrates. Microw. Opt. Technol. Lett., 52 (2) (2010), 327331.CrossRefGoogle Scholar
[16]Errifi, H., Baghdad, A., Badri, A.; Sahel, A.: Directivity enhancement of aperture coupled microstrip patch antenna using two layers dielectric superstrate, in 2014 14th Mediterranean Microwave Symp., IEEE, Marrakech, 2014, 14.CrossRefGoogle Scholar
[17]Vikrant, V.; Khanna, R.A.: Comparison in the performance of microstrip patch antenna with and without EBG substrate and superstrate, in 2013 Third Advanced Computing and Communication Technologies Conf., IEEE, India, 2013, 146150.CrossRefGoogle Scholar
[18]Attia, H.; Ramahi, O.M.: EBG superstrate for gain and bandwidth enhancement of microstrip array antennas, in 2008 International Antennas and Propagation Symp., IEEE, Canada, 2008, 14.CrossRefGoogle Scholar
[19]Foroozesh, A.; Shafai, L.: Investigation into the effects of the patch type FSS superstrate on the high-gain cavity resonance antenna design. IEEE Trans. Antennas Propag., 58 (2) (2010), 258270.CrossRefGoogle Scholar
[20]Juyal, P.; Shafai, L.: A novel printed directive antenna configuration, in 2014 Int. Antenna Technology and Applied Electromagnetics Symp., Canada, 2014, 13.CrossRefGoogle Scholar
[21]Joshi, J.G., Pattnaik, S.S.; Devi, S.: Metamaterial embedded wearable rectangular microstrip patch antenna. Hindawi Int. J. Antennas Propag., 2012 (2012), 19.CrossRefGoogle Scholar
[22]Joshi, J.G., Pattnaik, S.S.; Devi, S.: Metamaterial loaded square slotted dual band microstrip patch antenna, in 2011 Applied Electromagnetics Conf., IEEE, India, 2011, 14.CrossRefGoogle Scholar
[23]Arora, C., Pattnaik, S.S.; Baral, R.N.: SRR inspired microstrip patch antenna array. J. Prog. Electromag. Res. C, 58 (2015), 8996.CrossRefGoogle Scholar
[24]Arora, C., Pattnaik, S.S.; Baral, R.N.: Microstrip patch antenna array with metamaterial ground plane for Wi-MAX applications, in 2015 Computer and Communication Technologies Conf., Springer, India, 2015, 665671.CrossRefGoogle Scholar
[25]Arora, C., Pattnaik, S.S.; Baral, R.N.: Metamaterial superstrate for performance enhancement of microstrip patch antenna array, in 2016 Signal Processing and Integrated Networks (SPIN-2016) Conf., IEEE, India, 2016, 775779.CrossRefGoogle Scholar
[26]Ferdous, S.; Hossain, A.; Chowdhury, S.M.H., Mahdy, M.R.C.: Reduced and conventional size multi-band circular patch antennas loaded with metamaterials. IET Microw. Antennas Propag., 7 (9) (2013), 768776.CrossRefGoogle Scholar
[27]Ihsan, R.R.; Munir, A.: Utilization of artificial magnetic conductor for bandwidth enhancement of square patch antenna, in 2012 Telecommunication Systems, Services, and Applications Conf., IEEE, Bali, 2012, 192195.CrossRefGoogle Scholar
[28]Lapine, M.; Tretyakov, S.: Contemporary notes on metamaterials. IET Microw. Antennas Propag., 1 (1) (2007), 311.CrossRefGoogle Scholar
[29]Veselago, V.G.: The electrodynamics of substances with simultaneous negative values of ε and µ. Sov. Phys. — Usp., 10 (4) (1968), 509514.CrossRefGoogle Scholar
[30]Pendry, J.B., Holden, A.J., Stewart, W.J.; Youngs, I.: Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett., 76 (25) (1996), 47734776.CrossRefGoogle ScholarPubMed
[31]Pendry, J.B., Holden, A.J., Robbins, D.J.; Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech., 47 (11), (1999), 20752084.CrossRefGoogle Scholar
[32]Smith, D.R., Padilla, W.J., Vier, D.C., Nasser, S.C.N.; Schultz, S.: Composite medium with simultaneous negative permeability and permittivity. Phys. Rev. Lett., 84 (18) (2000), 41844187.CrossRefGoogle ScholarPubMed
[33]Engheta, N.; Ziolkowski, R.W.: A positive future for double negative metamaterials. IEEE Trans. Microw. Theory Tech., 53 (4) (2005), 15351556.CrossRefGoogle Scholar
[34]Alu, A., Engheta, N., Erentok, A.; Ziolkowski, R.W.: Single negative, double-negative, and low-index metamaterials and their electromagnetic applications. IEEE Antennas Propag. Mag., 49 (1) (2007), 2336.CrossRefGoogle Scholar
[35]Jackson, D.R.; Alexopoulos, N.G.: Gain enhancement methods for printed circuit antennas. IEEE Trans. Antennas Propag., 33 (9) (1985), 976987.CrossRefGoogle Scholar
[36]Burokur, S.N., Latrach, M.; Toutain, S.: Theoretical investigation of a circular patch antenna in the presence of a left-handed medium. IEEE Antennas Wireless Propag. Lett., 4 (1) (2005), 183186.CrossRefGoogle Scholar
[37]Chaimool, S., Chung, K.L.; Akkaraekthalin, P.: Simultaneous gain and bandwidths enhancement of a single-feed circularly polarized microstrip patch antenna using a metamaterial reflective surface. J. Prog. Electromag. Res. B, 22 (2010), 2337.CrossRefGoogle Scholar
[38]Li, D., Szabo, Z., Qing, X., Li, E.P.; Chen, Z.N.: A high gain antenna with an optimized metamaterial inspired superstrate. IEEE Trans. Antennas Propag., 60 (12) (2012), 60186023.CrossRefGoogle Scholar
[39]Garg, R., Bhartia, P., Bhal, I.; Ittipiboon, A.: Microstrip Antenna Design Handbook, Artech House, UK, 2001.Google Scholar
[40]Balanis, C.A.: Modern Antenna Handbook, John Wiley & Sons, New York, USA, 2011.Google Scholar
[41]Pozar, D.M.: Microwave Engineering, John Wiley & Sons, New York, USA, 2008.Google Scholar
[42]Joshi, J.G., Pattnaik, S.S., Devi, S.; Lohokare, M.R.: Frequency switching of electrically small antenna patch antenna using metamaterial loading. Indian J. Radio Space Phys., 40 (3) (2011), 159165.Google Scholar
[43]Mohan, S.S.: Design, Modeling and Optimization of On-chip Inductor and Transformer Circuits. Ph.D. dissertation, Stanford University, Stanford, CA, 1999.Google Scholar
[44]Terman, F.E.: Radio Engineers’ Handbook, McGrawHill, New York, 1943, p. 52.Google Scholar
[45]Wang, J., Qu, S., Xu, Z., Ma, H., Yang, Y.; Gu, C.: A controllable magnetic metamaterial: split-ring resonator with rotated inner ring. IEEE Trans. Antennas Propag., 6 (7), (2008), 20182022.CrossRefGoogle Scholar
[46]Labidi, M., Tahar, J.B.; Choubani, F.: A new proposed analytical model of circular split ring resonator. J. Mater. Sci. Eng. B, 1 (2011), 696701.Google Scholar