Skip to main content Accessibility help
×
Home

ISAR imaging of moving satellite based on GO–PO scattering model

  • Jiakun Wang (a1), Min Zhang (a1), Pengbo Wei (a1) and Panpan Jiang (a1)

Abstract

An efficient algorithm is proposed for the radar cross-section (RCS) prediction of complex target with electronically large size, which is a combination of geometrical optics and physical optics (GO–PO) method. The method taking the multiple reflections into account is applied to the electromagnetic scattering analysis of a satellite model. Then RCS curves of entire satellite model and the model without antenna structure are figured out. Based on the simulated echoes, the traditional inverse synthetic aperture radar (ISAR) images are discussed. Moreover, an application of motion compensation technique based on the joint time-frequency analysis is presented for ISAR imaging of the moving satellite that has both translational and rotational movements. Numerical results show good performance of GO–PO method in accuracy and efficiency and the great influence of the antenna with corner structures on the scattering characteristic of the satellite.

Copyright

Corresponding author

Corresponding author: M. Zhang Email: mzhang@mail.xidian.edu.cn

References

Hide All
[1] Ruan, Y.Z.: Hai Chen: Radar Cross Section, Electronic Industry Press, Beijing, 1988.
[2] Youssed, N.N.: Radar cross section of complex targets. Proc. IEEE, 77, (1989), 722734.
[3] Knott, E.F.: RCS reduction of dihedral corners. IEEE Trans. Antennas Propag., 25 (1977), 406409.
[4] Ross, R.A.: Application of geometrical diffraction theory to reflex scattering centers, in IEEE Antennas and Propagation Society Int. Symp., vol. 6, 1968, 9499.
[5] Anderson, W.C.: Consequences of nonorthogonality on the scattering properties of dihedral reflectors. IEEE Trans. Antennas Propag., 35 (1987), 11541159.
[6] Griesser, T.: Backscatter Analysis of dihedral corner reflector using physical optics and the physical theory of diffraction. IEEE Trans. Antennas Propag., 35 (1987), 11371145.
[7] Harrington, R.F.: Field Computation by Moment Methods, McMillan, New York, 1968.
[8] Sertel, K.; Volakis, J.L.: Multilevel fast multipole method solution of volume integral equations using parametric geometry modeling. IEEE Trans. Antennas Propag., 52 (2004), 16861692.
[9] Ozdemir, C.: Inverse Synthetic Aperture Radar Imaging with MATLAB, John Wiley & Sons, Canada, 2012.
[10] Gombert, G.; Beckner, F.: High resolution 2-D ISAR image collection and processing. Proc. IEEE, 1 (1994), 371377.
[11] Yao, H.Y.; Zhou, H.Y.: ISAR Imaging of Complex Targets Based on Electromagnetic Scattering Field, Metamaterials 2012 Int. Workshop, Nanjing, 2012.
[12] Zu, Y.Z.; Zhang, D.C.; Yin, Z.P.: Broadband Electromagnetic Scattering Echo Generation and its ISAR Imaging Simulation, in Int. Conf. Microwave and Millimeter Wave Technology, Nanjing, 2008.
[13] Garcia-Fernandez, A.F.; Yeste-Ojeda, O.A.; Grajal, J.: Facet model of moving targets for ISAR imaging and radar back-scattering simulation. IEEE Trans. Aerosp. Electron. Sys., 46 (2010), 14551467.
[14] Garcia-Fernandez, A.F.; Grajal, J.; Yeste-Ojeda, O.A.: Back-scattering of a helicopter with a millimeter-wave LFMCW radar. IEEE Trans. Aerosp. Electron. Sys., 49 (2013), 27812792.
[15] Wang, H.Q.; Grenier, D.; Delisle, G.Y.: Translational motion compensation in ISAR image processing. IEEE Trans. Image Proc., 4 (1995), 15611571.
[16] Wang, G.Y.; Bao, Z.: The Minimum Entropy Criterion of Range Alignment in ISAR Motion Compensation, in Proc. Conf. Radar ’97, Edinburgh, 1997.
[17] Xi, L.; Guosui, L.; Ni, J.: Autofocusing of ISAR image based on entropy minimization. IEEE Trans. Aerosp. Electron. Sys., 35 (1999), 12401252.
[18] Chen, V.C.; Ling, H.: Time-Frequency Transforms for Radar Imaging and Signal Processing, Artech House, Norwood, 2002.
[19] Chen, V.C.; Qian, S.: Joint time-frequency transform for radar range-Doppler imaging. IEEE Trans. Aerosp. Electron. Sys., 34 (1998), 486499.
[20] Wei, P.Bo.; Zhang, M.: GPU-based combination of GO and PO for electromagnetic scattering of satellite. IEEE Trans. Antennas Propag., 60 (2012), 52785285.
[21] Gorden, W.B.: Far field approximation of the Kirchhoff–Helmholtz representation of scattering fields. IEEE Trans. Antennas Propag., 23 (1975), 590592.
[22] Mallat, S.G.; Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process., 41 (1993), 33973415.
[23] Franaszczuk, P.J.; Bergey, G.K.; Durka, P.J.: Time-frequency analysis using the matching pursuit algorithm applied to seizures originating from the mesial temporal lobe. Electroencephalogr. Clin. Neurophysiol., 106 (1998), 513521.
[24] Li, G.; Zhang, H.; Wang, X.; Xia, X.G.: ISAR imaging of maneuvering targets via matching pursuit, in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), 2010, 16251628.

Keywords

ISAR imaging of moving satellite based on GO–PO scattering model

  • Jiakun Wang (a1), Min Zhang (a1), Pengbo Wei (a1) and Panpan Jiang (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed