Skip to main content Accessibility help
×
Home

A highly efficient 3.5 GHz inverse class-F GaN HEMT power amplifier

  • Paul Saad (a1), Christian Fager (a1), Hossein Mashad Nemati (a1), Haiying Cao (a1), Herbert Zirath (a1) and Kristoffer Andersson (a1)...

Abstract

This paper presents the design and implementation of an inverse class-F power amplifier (PA) using a high power gallium nitride high electron mobility transistor (GaN HEMT). For a 3.5 GHz continuous wave signal, the measurement results show state-of-the-art power-added efficiency (PAE) of 78%, a drain efficiency of 82%, a gain of 12 dB, and an output power of 12 W. Moreover, over a 300 MHz bandwidth, the PAE and output power are maintained at 60% and 10 W, respectively. Linearized modulated measurements using 20 MHz bandwidth long-term evolution (LTE) signal with 11.5 dB peak-to-average ratio show that −42 dBc adjacent channel power ratio (ACLR) is achieved, with an average PAE of 30%, −47 dBc ACLR with an average PAE of 40% are obtained when using a WCDMA signal with 6.6 dB peak-to-average ratio (PAR).

Copyright

Corresponding author

Corresponding author: P. Saad Email: paul.saad@chalmers.se

References

Hide All
[1]Cripps, S.C.: RF Power Amplifiers for Wireless Communications, Artech House, Norwood, MA, 2006.
[2]Raab, F.H.: Class-F power amplifiers with maximally flat waveforms. IEEE Trans. Microw. Theory Tech., 45 (11) (1997), 20072012.
[3]Pribble, W. et al. : Applications of SiC MESFETs and GaN HEMTs in power amplifier design, in IEEE MTT-S Int. Micro. Symp. Dig., vol. 3, 2002, 1819–1822.
[4]Nagy, W.; Brown, J.; Borges, R.; Singhal, S.: Linearity characteristics of microwave-power GaN HEMts. IEEE Trans. Microw. Theory Tech., 51 (2) (2003), 660664.
[5]Inoue, A.; Ohta, A.; Goto, S.; Ishikawa, T.; Matsuda, Y.: The efficiency of class F and inverse class F amplifiers, in IEEE MTT-S Int. Micro. Symp. Dig., vol. 3, 2004, 1947–1950.
[6]Wei, C.J. et al. : Analysis and experimental waveform study on inverse class-F mode of microwave power FETs. IEEE Trans. Microw. Theory Tech., 2000, 525528.
[7]Goto, S. et al. : Effect of bias condition and input harmonic termination on high efficiency inverse class-F amplifiers, in Proc. 31st European Microwave Conf., 2001, 1–4.
[8]Woo, Y.Y.; Yang, Y.; Kim, B.: Analysis and experiments for high efficiency class-F and inverse class-F power amplifiers. IEEE Trans. Microw. Theory Tech., 54 (5) (2006), 19691974.
[9]Saad, P.; Nemati, H.; Thorsell, M.; Andersson, K.; Fager, C.: An inverse class-F GaN HEMT power amplifier with 78% PAE at 3.5 GHz, in Proc. 39th European Microwave Conf., 2009, 496–499.
[10]Bae, H.G., Negra, R., Boumaiza, S., Ghannouchi, F.: High-efficiency GaN class-E power amplifier with compact harmonic-suppression network, in Proc. 37th European Microwave Conf., 2007, 1093–1096.
[11]Aflaki, P.; Negra, R.; Ghannouchi, F.: Design and implementation of an inverse class-F power amplifier with 79% efficiency by using a switch-based active device model, in Radio and Wireless Symp., 2008 IEEE, 2008, 423–426.
[12]Schmelzer, D.; Long, S.: A GaN HEMT class F amplifier at 2 GHz with > 80% PAE. IEEE J. Solid-State Circuits, 42 (10) (2007), 21302136.
[13]Al Tanany, A.; Sayed, A.; Boeck, G.: A 2.14 GHz 50 Watt 60% power added efficiency GaN current mode Class D power amplifier, in Proc. 38th European Microwave Conf., 2008, 432–435.
[14]Lee, Y.-S.; Jeong, Y.-H.: A high-efficiency class-E GaN HEMT power amplifier for WCDMA applications. IEEE Microw. Wirel. Compon. Lett., 17 (8) (2007), 622624.
[15]Choi, H.; Shim, S.; Jeong, Y.; Lim, J.; Kim, C.D.: A compact DGS load-network for highly efficient class-E power amplifier, in Proc. 39th European Microwave Conf., 2009, 492–495.
[16]Lee, M.-W.; Lee, Y.-S.; Jeong, Y.-H.: A high-efficiency GaN HEMT hybrid class-E power amplifier for 3.5 GHz WiMAX applications, in Proc. 38th European Microwave Conf., 2008, 436–439.
[17]Raab, F.: Class-E, Class-C, and Class-F power amplifiers based upon a finite number of harmonics. IEEE Trans. Microw. Theory Tech., 49 (8) (2001), 14621468.
[18]Negra, R.; Bachtold, W.: Lumped-element load-network design for class-E power amplifiers. IEEE Trans. Microw. Theory Tech., 54 (6) (2006), 26842690.
[19]Negra, R.; Ghannouchi, F.; Bachtold, W.: Study and design optimization of multiharmonic transmission-line load networks for class-E and class-F K-Band MMIC power amplifiers. IEEE Trans. Microw. Theory Tech., 55 (6) (2007), 13901397.
[20]Nemati, H.; Fager, C.; Thorsell, M.; Herbert, Z.: High-efficiency LDMOS power-amplifier design at 1 GHz using an optimized transistor model. IEEE Trans. Microw. Theory Tech., 57 (7) (2009), 16471654.
[21]Rollett, J.: Stability and power-gain invariants of linear two ports. IEEE Trans. Circuit Theory, 9 (1) (1962), 2932.
[22]Kim, J.; Konstantinou, K.: Digital predistortion of wideband signals based on power amplifier model with memory. Electron. Lett., 37 (23) (2001), 14171418.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed