Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-19T00:57:32.075Z Has data issue: false hasContentIssue false

High-frequency monolithic thin-film piezoelectric-on-substrate filters

Published online by Cambridge University Press:  13 March 2009

Reza Abdolvand*
Affiliation:
School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK 74078, USA. Phone: +1 4057445251.
Farrokh Ayazi
Affiliation:
School of Electrical and Computer Engineering, Georgia Institute of Technology, USA. Phone: +1 4048949496.
*
Corresponding author: R. Abdolvand E-mail: reza.abdolvand@okstate.edu

Abstract

A class of micromachined acoustic filters is presented in which the number of individual resonant structures is reduced to 1 (monolithic filter). This resonant structure is comprised of a stack of thin-film piezoelectric-on-silicon. Symmetric and anti-symmetric resonance modes (dual modes) of the silicon structure are piezoelectrically excited and coupled to realize a 2-pole narrowband filter. High-order lateral bulk acoustic resonance modes of a rectangular plate are utilized to design dispersed-frequency UHF filters fabricated on a single substrate. Thickness mode filters are also realized at GHz frequencies using a new interdigitated electrode design. Additionally, it is shown that the filter bandwidth can be controlled by changing the dimensions of the resonant structure and the electrode pattern. Narrowband lateral mode filters with filter Q’s larger than 300 at ~440 MHz and thickness mode filters with filter Q’s in the range of 150–900 at ~3.1 GHz are demonstrated.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ayazi, F.; Pourkamali, S.; Ho, G.K.; Abdolvand, R.: High-aspect-ratio SOI vibrating micromechanical resonators and filters. Microwave Symp. Digest. IEEE MTT-S Int., (2006), 676679.Google Scholar
[2]Sheng-Shian, L.; Demirci, M.C.; Yu-Wei, L.; Zeying, R.; Nguyen, C.T.-C.: Bridged micromechanical filters. IEEE Int. Freq. Control Symp. Exposition, (2004), 280286.Google Scholar
[3]Ruby, R.; Bradley, P.; Clark, D.; Feld, D.; Jamneala, T.; Wang, K.: Acoustic FBAR for filters, duplexers and front end modules. IEEE MTT-S Int. Microwave Symp. Dig., 2 (2004), 931934.Google Scholar
[4]Lakin, K.M.: Coupled resonator filters. IEEE Ultrason. Symp., 1 (2002), 901908.Google Scholar
[5]Small, M.K.; Jamneala, T.; Callaghan, L.A.; Larson, J.D.; Ruby, R.C.: A de-coupled stacked bulk acoustic resonator (DSBAR) filter with 2 dB bandwidth >4%. IEEE Ultrason. Symp., (2007), 604607.Google Scholar
[6]Ballato, A.; Lukaszek, T.: A novel frequency selective device: the stacked-crystal filter. Annu. Symp. Freq. Control, (1973), 262276.Google Scholar
[7]Beaver, W.D.: Theory and design of the monolithic crystal filter. Freq. Control, (1967), 179199.Google Scholar
[8]Kinsman, R.G.: A history of crystal filters. Freq. Control Symp., (1998), 563570.Google Scholar
[9]Stephanou, P.J.; Piazza, G.; White, C.D.; Wijesundara, M.B.J.; Pisano, A.P.: Piezoelectric aluminum nitride MEMS annular dual contour mode filter. Sensors Actuators A, 134 (2007), 152160.CrossRefGoogle Scholar
[10]Ho, G.K.; Abdolvand, R.; Sivapurapu, A.; Humad, S.; Ayazi, F.: Piezoelectric-on-silicon lateral bulk acoustic wave micromechanical resonators. J. Microelectromech Syst, 17 (2) (2008), 512520.CrossRefGoogle Scholar
[11]Abdolvand, R.; Ayazi, F.: Enhanced power handling and quality factor in thin-film piezoelectric-on-substrate resonators. IEEE Ultrason. Symp., (2007), 608611.Google Scholar
[12]Abdolvand, R.; Ayazi, F.: Thin-film piezoelectric-on-silicon resonators for high frequency oscillator application. IEEE Trans. Ultrason., Ferroelectrics Freq. Control, 55 (12) (2008), 25962606.CrossRefGoogle Scholar
[13]Mason, W.P.: Equivalent electromechanical representation of trapped energy transducers. Proc. IEEE, 57 (10) (1969), 17231734.CrossRefGoogle Scholar
[14]Ho, G.K.; Abdolvand, R.; Ayazi, F.: High-order composite bulk acoustic resonators, Proc. IEEE Micro-Electro Mechanical Systems Conf., Japan, January 2007, 791794.CrossRefGoogle Scholar
[15]Wang, K.; Nguyen, C.T.-C.: High-order medium frequency micromechanical electronic filters. J. Microelectromech Syst., 8 (4) (1999), 534556.CrossRefGoogle Scholar
[16]Dworsky, L.: An improved circuit model for monolithic crystal filters. IEEE Trans. Sonics Ultrason., 28 (4) (1981), 283284.CrossRefGoogle Scholar
[17]Onoe, M., Jumonji, H., Kobori, N.: High frequency crystal filters employing multiple mode resonators vibrating in trapped energy modes. 20th Annual Symp. on Frequency Control, 1966, 266287.CrossRefGoogle Scholar