Skip to main content Accessibility help

Efficient technique for ultra broadband, linear power amplifier design

  • Ahmed Sayed (a1), Sebastian Preis (a1) and Georg Boeck (a2)


In this paper, a 10 W ultra-broadband GaN power amplifier (PA) is designed, fabricated, and tested. The suggested design technique provides a more accurate starting point for matching network synthesis and better prediction of achievable circuit performance. A negative-image model was used to fit the extracted optimum impedances based on source-/load-pull technique and multi-section impedance matching networks were designed. The implemented amplifier presents an excellent broadband performance, resulting in a gain of 8.5 ± 0.5 dB, saturated output power of ≥10 W, and power added efficiency (PAE) of ≥23% over the whole bandwidth. The linearity performance has also been characterized. An output third-order intercept point (OIP3) of ≥45 dBm was extracted based on a two-tone measurement technique in the operating bandwidth with different frequency spacing values. The memory effect based on AM/AM and AM/PM conversions was also characterized using a modulated WiMAX signal of 10 MHz bandwidth at 5.8 GHz. Furthermore, a broadband Wilkinson combiner was designed for the same bandwidth with very low loss to extend the overall output power. Excellent agreement between simulated and measured PA performances was also achieved.


Corresponding author

Corresponding author: A. Sayed Email:


Hide All
[1]Skolnik, M.: Role of radar in microwaves. IEEE Trans. Microw. Theory Tech., 50 (2002), 625632.
[2]Hwi-Jae, J.; Hyung-Yun, K.: Performance analysis of CDMA-OFDM system via cooperative communication in wireless channel, in First Int. Forum on Strategic Technology, 2006, 8083.
[3]Ormondroyd, R.; Maxey, J.; Alsusa, E.: COFDM. An alternative strategy for future-generation mobile communications. IEE Colloq. Mob. Commun., (1996), 16. doi:10.1049/ic:19960724.
[4]Biggs, M.; Henley, A.; Clarkson, T.: Occupancy analysis of the 2.4 GHz ISM band. IEE Proc. Commun., 51 (2004), 481488.
[5]Sayed, A.; Boeck, G.: Two stage ultra wideband 5 W power amplifier using SiC MESFET. IEEE Trans. Microw. Theory Tech., 53 (2005), 24412449.
[6]Sayed, A.; Boeck, G.: 5W highly linear GaN power amplifier with 3.4 GHz bandwidth, in Proc. 37th European Microwave Conf., Munich, Germany, October 2007, 631634.
[7]Sayed, A.; Al Tanany, A.; Boeck, G.: 5W, 0.35–8 GHz linear power amplifier using GaN HEMT, in Proc. 39th European Microwave Conf., Rome, Italy, September 2009, 488491.
[8]Medley, M.; Allen, J.: Broad-band GaAs FET amplifier design using negative-image device models. IEEE Trans. Microw. Theory Tech., 27 (1979), 784787.
[9]Shastry, P.; Ibrahim, A.: Design guidelines for a novel tapered drain line distributed power amplifier, in Proc. 36th European Microwave Conf, Manchester, UK, September 2006, 12741277.
[10]Duperrier, C.; Campovecchio, M.; Roussel, L.; Lajugie, M.; Quere, R.: New design method of uniform and nonuniform distributed power amplifiers. IEEE Trans. Microw. Theory Tech., 49 (12) (2001), 24942500.
[11]Seo, M.; Kim, K.; Kim, M.; Kim, H.; Jeon, J.; Park, M.; Lim, H.; Yang, Y.: Ultrabroadband linear power amplifier using a frequency-selective analog predistorter. IEEE Trans. Circuits Syst., 58-II (5) (2011), 264268.
[12]Wright, P.; Lees, J.; Benedikt, J.; Tasker, P.J.; Cripps, S.C.: A methodology for realizing high efficiency class-J in a linear and broadband PA. IEEE Trans. Microw. Theory Tech., 57 (12) (2009), 31963204.
[13]Gassmann, J.; Watson, P.; Kehias, L.; Henry, G.: Wideband, high efficiency GaN power amplifiers utilizing a nonuniform distributed topology. IEEE MTT-S Int. Microw. Symp. Dig., (2007), 615618. doi:10.1109/MWSYM.2007.379976.
[14]Dib, N.; Khodier, M.: Design and optimization of multi-band Wilkinson power divider. Int. J. RF Microw. Comput. Aided Eng., 18 (1) (2008), 1420.


Efficient technique for ultra broadband, linear power amplifier design

  • Ahmed Sayed (a1), Sebastian Preis (a1) and Georg Boeck (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed