Skip to main content Accessibility help
×
Home

Development of a mid range automotive radar sensor for future driver assistance systems

  • Raik Schnabel (a1), Raphael Hellinger (a1), Dirk Steinbuch (a1), Joachim Selinger (a1), Michael Klar (a1) and Bernhard Lucas (a1)...

Abstract

Radar sensors are key components of modern driver assistance systems. The application of such systems in urban environments for safety applications is the primary goal of the project “Radar on Chip for Cars” (RoCC). Major outcomes of this project will be presented and discussed in this contribution. These outcomes include the specification of radar sensors for future driver assistance systems, radar concepts, and integration technologies for silicon-germanium (SiGe) MMICs, as well as the development and evaluation of a system demonstrator. A radar architecture utilizing planar antennas and highly integrated components will be proposed and discussed with respect to system specifications. The developed system demonstrator will be evaluated in terms of key parameters such as field of view, distance, and angular separability. Finally, as an outlook a new mid range radar (MRR) will be introduced incorporating several concepts and technologies developed in this project.

Copyright

Corresponding author

Corresponding author: R. Schnabel Email: raik.schnabel@de.bosch.com

References

Hide All
[1]Hasch, J.; Topak, E.; Schnabel, R.; Zwick, T.; Weigel, R.; Waldschmidt, C.: Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Trans. Microwave Theory Tech., 60 (3) (2012), 845860.
[2]Gresham, I. et al. : A compact manufacturable 76–77–GHz radar module for commercial ACC applications. IEEE Trans. Microwave Theory Tech., 49 (1) (2001), 4458.
[3]Freundt, D.; Lucas, B.: Long range radar sensor for high-volume driver assistance systems market, in Proc. SAE World Congress and Exhibition, 2008, 117124.
[4]Li, H.; Rein, H.-M.; Suttorp, T.; Böck, J.: Fully integrated SiGe VCOs with powerful output buffer for 77 GHz automotive radar systems and applications around 100 GHz. IEEE J. Solid-State Circuits, 39 (2004), 16501658.
[5]Schneider, R.; Blöcher, H.-L.; Strohm, K.M.: KOKON – automotive high frequency technology at 77/79 GHz, in European Microwave Conf., 9–12 October 2007, 15261529.
[6]Knapp, H. et al. : Sige circuits for automotive radar, in 2007 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 10–12 January 2007, 231236.
[7]Blöcher, H.-L.; Dickmann, J.: Automotive radar for safety and driver assistance applications: Status and trends, in Presented at the European Radar Conf. Workshop WFF01, October 2010.
[8]Hasch, L.; Waldschmidt, C.: In Safety for all. Presented at the European Radar Conf. Workshop WFF01, October 2010.
[9]Günther, O.; Steinbuch, D.; Brüggemann, O.; Jäger, H.; Weigel, R.: DC-offset compensation of a 77 GHz monostatic FMCW-radar transceiver for automotive application, in Radio and Wireless Symp., 2008 IEEE, 22–24 January 2008, 4952.
[10]Forstner, H.P. et al. : A 77 GHz 4–channel automotive radar transceiver in SiGe, in Radio Frequency Integrated Circuits Symp., 2008. RFIC 2008. IEEE, 17 June 2008–17 April 2008, 233236.
[11]Baur, K.; Mayer, M.; Rack, V.; Vogel, D.; Walter, T.: Angular measurements in azimuth and elevation using 77 GHz radar sensors, in Radar Conf. (EuRAD), 2010 European, 30 September–1 October 2010, 184187.
[12]Budka, T.P.: Wide-bandwidth millimeter-wave bond-wire interconnects. IEEE Trans. Microwave Theory Tech., 49 (4) (2001), 715718.
[13]Günther, O.: Modellierung und Leakage-Kompensation von 77 GHz FMCW-Weitbereichsradar-Transceivern in SiGe-Technologie für Kfz-Anwendungen. Ph.D. dissertation, University of Erlangen, Germany, 2008.
[14]Kuang, K.; Kim, F.; Cahill, S.S.: RF and Microwave Microelectronics Packaging. Springer, New York, 2010.
[15]Jentzsch, A.; Heinrich, W.: Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz. IEEE Trans. Microwave Theory Tech., 49 (5) (2001), 871878.
[16]Brunnbauer, M. et al. : An embedded device technology based on a molded reconfigured wafer, in Proc. Electronic Components and Technology Conf., July 2006, 547551.
[17]International Technology Roadmap for Semiconductors (ITRS), Millimeter Wave 10 GHz–100 GHz Technology Requirements 2010 [Online]. Available: http://www.itrs.net
[18]Wojnowski, M.; Engl, M.; Brunnbauer, M.; Pressel, K.; Sommer, G.; Weigel, R.: High frequency characterization of thin-film redistribution layers for embedded wafer level BGA, in Proc. Electronics Packaging Technology Conf., December 2007, 2007, 308314.
[19]Wojnowski, M. et al. : A 77 GHz SiGe mixer in an embedded wafer level BGA package, in Proc. Electronic Components and Technology Conf., May 2008, 290296.
[20]en Luan, J. et al. : Challenges for extra large embedded wafer level ball grid array development, in Electronics Packaging Technology Conf., 2009. EPTC'09, 11 December 2009, 202207.
[21]Brunnbauer, M.; Meyer, T.; Ofner, G.; Mueller, K.; Hagen, R.: Embedded wafer level ball grid array (eWLB), in Electronic Manufacturing Technology Symp. (IEMT), 2008 33rd IEEE/CPMT Int., November 2008, 16.
[22]Meyer, T.; Pressel, K.; Ofner, G.; Romer, B.: System integration with eWLB, in Electronic System-Integration Technology Conf. (ESTC), 3 September 2010, 19.
[23]Yoon, S.W.; Bahr, A.; Baraton, X.; Marimuthu, P.; Carson, F.: 3D eWLB (embedded wafer level BGA) technology for 3D-packaging/3DSiP (Systems-in-Package) applications, in Electronics Packaging Technology Conf., 2009. EPTC'09, 11 December 2009, 915919.
[24]Al Henawy, M.; Schneider, M.: Integrated antennas in eWLB packages for 77 GHz and 79 GHz automotive radar sensors, in European Microwave Conf., 2011, 13121315.
[25]Tamang, P.: Radar sensors. Vision Zero Int., 68–69, June 2011 [Online]. Available: http://www.scribd.com/doc/58141328/Vision-Zero-International-June-2011.
[26]Schnabel, R.; Mittelstrass, D.; Binzer, T.; Waldschmidt, C.; Weigel, R.: Reflection, refraction, and self-Jamming. IEEE Microwave Mag., 13 (3) (2012), 107117, IMS special issue.
[27]Wagner, C. et al. : A 77 GHz automotive radar receiver in a wafer level package, In Radio Frequency Integrated Circuits Symp. (RFIC), 2012 IEEE, 17–19 June 2012, 511514.
[28]Knapp, H. et al. : Three-channel 77 GHz automotive radar transmitter in plastic package, in Radio Frequency Integrated Circuits Symp. (RFIC), 2012 IEEE, 17–19 June 2012, 119122.
[29]Hildebrandt, J.: 77 GHz mid range radar for a variety of applications, in Presented at the IWPC—Automotive Radar Workshop, February 2011.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed