Skip to main content Accessibility help
×
Home

Design and modeling of an ultra-wideband low-noise distributed amplifier in InP DHBT technology

  • T. Shivan (a1), E. Kaule (a2), M. Hossain (a1), R. Doerner (a1), T. Johansen (a3), D. Stoppel (a1), S. Boppel (a1), W. Heinrich (a1), V. Krozer (a1) (a4) and M. Rudolph (a1) (a2)...

Abstract

This paper reports on an ultra-wideband low-noise distributed amplifier (LNDA) in a transferred-substrate InP double heterojunction bipolar transistor (DHBT) technology which exhibits a uniform low-noise characteristic over a large frequency range. To obtain very high bandwidth, a distributed architecture has been chosen with cascode unit gain cells. Each unit cell consists of two cascode-connected transistors with 500 nm emitter length and ft/fmax of ~360/492 GHz, respectively. Due to optimum line-impedance matching, low common-base transistor capacitance, and low collector-current operation, the circuit exhibits a low-noise figure (NF) over a broad frequency range. A 3-dB bandwidth from 40 to 185 GHz is measured, with an NF of 8 dB within the frequency range between 75 and 105 GHz. Moreover, this circuit demonstrates the widest 3-dB bandwidth operation among all reported single-stage amplifiers with a cascode configuration. Additionally, this work has proposed that the noise sources of the InP DHBTs are largely uncorrelated. As a result, a reliable prediction can be done for the NF of ultra-wideband circuits beyond the frequency range of the measurement equipment.

Copyright

Corresponding author

Author for correspondence: T. Shivan, E-mail: tanjil.shivan@fbh-berlin.de

References

Hide All
1.Lai, R, Mei, XB, Deal, WR, Yoshida, W, Kim, YM, Liu, PH, Lee, J, Uyeda, J, Radisic, V, Lange, M, Gaier, T, Samoska, L and Fung, A (2007) Sub 50 nm InP HEMT device with fmax greater than 1 THz, in Proc. IEEE Electron Devices Meeting. Washington, DC, USA, pp. 609611.
2.Kim, DH, del Alamo, JA, Chen, P, Ha, W, Urteaga, M and Brar, B (2010) 50-nm E-mode In0.7Ga0.3As PHEMTs on 100-mm InP substrate with fmax>1 THz, in Proc. IEEE Electron Devices Meeting, San Francisco, CA, USA, pp. 30.6.130.6.4.
3.Urteaga, M, Pierson, R, Rowell, P, Jain, V, Lobisser, E and Rodwell, MJW (2011) 130 nm InP DHBTs with ft>0.52 THz and fmax>1.1 THz, in Proc. 69th Annu. Device Res. Conf., Santa Barbara, CA, USA, pp. 281282.
4.Jain, V, Rode, JC, Chiang, H, Baraskar, A, Lobisser, E, Thibeault, BJ, Rodwell, M, Urteaga, M, Loubychev, D, Snyder, A, Wu, Y, Fastenau, JM and Liu, WK (2011) 1.0 THz fmax InP DHBTs in a refractory emitter and self-aligned base process for reduced base access resistance, in Proc. 69th Annu. Device Res. Conf., Santa Barbara, CA, USA, pp. 271272.
5.Rode, JC, Chiang, H, Choudhary, P, Jain, V, Thibeault, BJ, Mitchell, WJ, Rodwell, MJW, Urteaga, M, Loubychev, D, Snyder, A, Wu, Y, Fastenau, JM and Liu, AWK (2015) Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth. IEEE Transactions on Electron Devices 62, 27792785.
6.Mei, X, Yoshida, W, Lange, M, Lee, J, Zhou, J, Liu, P, Leong, K, Zamora, A, Padilla, J, Sarkozy, S, Lai, R, Deal, WR (2015) First demonstration of amplification at 1 THz using a 25-nm InP high electron mobility transistor process. IEEE Electron Device Letters 36, 229327.
7.Hacker, J, Urteaga, M, Seo, M, Skalare, A and Lin, R (2013) InP HBT amplifier MMICs operating to 0.67 THz, in IEEE MTT-S Microw. Symp. Dig., Seattle, WA, USA, pp. 13.
8.Seo, M, Urteaga, M, Hacker, J, Young, A, Skalare, A, Lin, R, Rodwell, M (2013) A 600 GHz InP HBT amplifier using cross-coupled feedback stabilization and dual-differential power combining, in IEEE MTT-S Microw. Symp. Dig., Seattle, WA, USA, pp. 13.
9.Testa, PV, Belfiore, G, Paulo, R, Carta, C and Ellinger, F (2015) 170 GHz SiGe-BiCMOS loss-compensated distributed amplifier. IEEE Journal of Solid-State Circuits 50, 22282238.
10.Pahl, P, Wagner, S, Massler, H, Diebold, S, Leuther, A, Kallfass, I, Zwick, T (2015) A 50 to 146 GHz power amplifier based on magnetic transformers and distributed gain cells. IEEE Microwave and Wireless Components Letters 25, 615617.
11.Yoon, S, Lee, I, Urteaga, M, Kim, M and Jeon, S (2014) A fully-integrated 40–222 GHz InP HBT distributed amplifier. IEEE Microwave and Wireless Components Letters 24, 460462.
12.Plouchart, JO, Zamdmer, N, Sherony, M, Tan, Y, Groves, RA, Trzcinski, R, Talbi, M, Ray, A, Wagner, LF (2004) A 4–91-GHz traveling-wave amplifier in a standard 0.12-μm SOI CMOS microprocessor technology. IEEE Journal of Solid-State Circuits 39, 14551461.
13.Ayasli, Y, Vorhaus, JL, Mozzi, R and Reynolds, L (1981) Monolithic GaAs travelling-wave amplifier. Electronics Letters 17, 413414.
14.Eriksson, K, Darwazeh, I and Zirath, H (2015) InP DHBT distributed amplifiers with Up to 235-GHz bandwidth. IEEE Transactions on Microwave Theory and Techniques 63, 13341341.
15.Shivan, T, Hossain, M, Stoppel, D, Weimann, N, Schulz, S, Doerner, R, Krozer, V, Heinrich, W (2018) An Ultra-broadband Low Noise Distributed Amplifier in InP DHBT Technology. 2018 18th European Microwave Integrated Circuit Conference, Madrid.
16.Weimann, NG, Stoppel, D, Schukfeh, MI, Hossain, M, Al-Sawaf, T, Janke, B, Doerner, R, Sinha, S, Schmückle, F-J, Krüger, O, Krozer, V, Heinrich, W, Lisker, M, Krüger, A, Datsuk, A, Meliani, C and Tillack, B (2016) SciFab – a wafer-level heterointegrated InP DHBT/SiGe BiCMOS foundry process for mm-wave applications. Physica Status Solidi A: Applications and Materials Science 213, 909916.
17.Johansen, TK, Rudolph, M, Jensen, T, Kraemer, T, Weimann, N, Schnieder, F, Krozer, V and Heinrich, W. (2014) Small- and large-signal modeling of InP HBTs in transferred-substrate technology. International Journal of Microwave and Wireless Technologies, 6, 243251.
18.Johansen, TK, Doerner, R, Weimann, N, Hossain, M, Krozer, V and Heinrich, W (2018) EM simulation assisted parameter extraction for transferred-substrate InP HBT modeling. International Journal of Microwave and Wireless Technologies 10, 700708. https://doi.org/10.1017/S1759078718000636.
19.Fukui, H (1966) The noise performance of microwave transistors. IEEE Transactions on Electron Devices ED-13, 329341.
20.Ziel, Avd (1958) Noise in junction transistors. Proceedings of the IRE 46, 10191038.
21.Rudolph, M, Doerner, R, Klapproth, L and Heymann, P (1999) An HBT noise model valid up to transit frequency. IEEE Electron Device Letters 20, 2426.
22.Rudolph, M, Korndörfer, F, Heymann, P and Heinrich, W (2008) Compact large-signal shot-noise model for HBTs. IEEE Transactions on Microwave Theory and Techniques 56, 714.
23.Kaule, E, Doerner, R, Weimann, N and Rudolph, M (2017) Noise modeling of transferred-substrate InP-DHBTs, in: IEEE Intl. Conf. Microwaves, Antennas, Comm., Electronic Syst. (COMCAS), pp. 14.
24.Weber, R, Massler, H and Leuther, A (2017) D-band low-noise amplifier MMIC with 50% bandwidth and 3.0 dB noise figure in 100 nm and 50 nm mHEMT technology. 2017 IEEE MTT-S International Microwave Symposium (IMS), Honolulu, HI, pp. 756759.
25.Zech, C, Diebold, S, Wagner, S, Schlechtweg, M, Leuther, A, Ambacher, O and Kallfass, I (2012) An ultra-broadband low-noise traveling-wave amplifier based on 50 nm InGaAs mHEMT technology. 2012 The 7th German Microwave Conference, Ilmenau, pp. 14.
26.Hoffman, J, Voinigescu, SP, Chevalier, P, Cathelin, A and Schvan, P (2015) A Low Noise, DC-135 GHz MOS-HBT Distributed Amplifier for Receiver Applications. 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), New Orleans, LA, pp. 14.
27.Fritsche, D, Tretter, G, Carta, C and Ellinger, F (2015) A trimmable cascaded distributed amplifier with 1.6 THz gain-bandwidth product. IEEE Transactions on Terahertz Science and Technology 5, 10941096.
28.Li, Y, Goh, WL, Tang, H, Liu, H, Deng, X and Xiong, YZ (2016) A 10 to 170 GHz distributed amplifier using 130-nm SiGe HBTs. 2016 International Symposium on Integrated Circuits (ISIC), Singapore, pp. 14.
29.Shivan, T, Weimann, N, Hossain, M, Stoppel, D, Boppel, S, Ostinelli, O, Doerner, R, Bolognesi, CR, Krozer, V, Heinrich, W (2018) A highly efficient ultrawideband traveling-wave amplifier in InP DHBT technology. IEEE Microwave and Wireless Components Letters 28, 10291031.
30.Brown, DF, Kurdoghlian, A, Grabar, R, Santos, D, Magadia, J, Fung, H, Tai, J, Khalaf, I and Micovic, M (2016) Broadband GaN DHFET Traveling Wave Amplifiers with up to 120 GHz Bandwidth. 2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Austin, TX, pp. 14.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed