Skip to main content Accessibility help
×
Home

Design and layout strategies for integrated frequency synthesizers with high spectral purity

  • Frank Herzel (a1) and Dietmar Kissinger (a1) (a2)

Abstract

Design guidelines for fractional-N phase-locked loops with a high spectral purity of the output signal are presented. Various causes for phase noise and spurious tones (spurs) in integer-N and fractional-N phase-locked loops (PLLs) are briefly described. These mechanisms include device noise, quantization noise folding, and noise coupling from charge pump (CP) and reference input buffer to the voltage-controlled oscillator (VCO) and vice versa through substrate and bondwires. Remedies are derived to mitigate the problems by using proper PLL parameters and a careful chip layout. They include a large CP current, sufficiently large transistors in the reference input buffer, linearization of the phase detector, a high speed of the programmable frequency divider, and minimization of the cross-coupling between the VCO and the other building blocks. Examples are given based on experimental PLLs in SiGe BiCMOS technologies for space communication and wireless base stations.

Copyright

Corresponding author

Corresponding author: F. Herzel Email: herzel@ihp-microelectronics.com

References

Hide All
[1] Pamarti, S.; Jansson, L.; Galton, I.: A wideband 2.4-GHz delta-sigma fractional-N PLL with 1-Mb/s in-loop modulation. IEEE J. Solid-State Circuits, 39 (2004), 4962.
[2] Pellerano, S.; Mukhopadhyay, R.; Ravi, A.; Laskar, J.; Palaskas, Y.: A 39.1-to-41.6 GHz ΔΣ fractional-N frequency synthesizer in 90 nm CMOS, in ISSCC Digest of Technical Papers, San Francisco, USA, 2008.
[3] Herzel, F. et al. : An integrated 18 GHz fractional-N PLL in SiGe BiCMOS technology for satellite communications, in IEEE Radio Frequency Integrated Circuits Symp. (RFIC), Boston, USA, 2009.
[4] Osmany, S.A.; Herzel, F.; Scheytt, J.C.: Analysis and minimization of substrate spurs in fractional-N frequency synthesizers. Analog Integr. Circuits Signal Process., 74 (2013), 545556. DOI: 10.1007/s10470-012-0002-x.
[5] Cressler, J.D.: SiGe HBT technology: a new contender for Si-based RF and microwave circuit applications. IEEE Trans. Microw. Theory Tech., 46 (1998), 572589.
[6] Lacaita, A.; Levantino, S.; Samori, C.: Integrated Frequency Synthesizers for Wireless Systems, Cambridge University Press, Cambridge, 2007.
[7] Miller, B.: A multiple modulator fractional divider. IEEE Trans. Instrum. Measurements, 40 (1991), 578583.
[8] Riley, T.A.D.; Filiol, N.M.; Du, Q.; Kostamovaara, J.: Techniques for in-band phase noise reduction in ΔΣ synthesizers. IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process., 50 (2003), 794803.
[9] De Muer, B.; Steyaert, M.S.J.: On the analysis of ΔΣ fractional-N frequency synthesizers. IEEE Trans. Circuits Systems II: Analog Digit. Signal Process., 50 (2003), 784793.
[10] Heyer, H.-V. et al. : Wide frequency range fractional-N synthesizer with improved phase noise for flexible payloads, in Proc. of 2nd ESA Workshop on Advanced Telecom Payloads, Noordwijk, The Netherlands, 2012.
[11] Wan, K.J.; Swaminathan, A.; Galton, I.: Spurios tone suppression techniques applied to a wide-bandwidth 2.4 GHz fractional-N PLL. IEEE J. Solid-State Circuits, 43 (2008), 27872797.
[12] Brennan, P.V.; Wang, H.; Jian, D.; Radmore, P.M.: A new mechanism producing discrete spurious components in fractional-N frequency synthesizers. IEEE Trans. Circuits Syst. I: Regular Papers, 55 (2008), 12791288.
[13] Herzel, F.; Osmany, S.A.; Scheytt, J.C.: Analytical phase-noise modeling and charge pump optimization for fractional-N PLLs. IEEE Trans. Circuits Syst. I: Regular Papers, 57 (2010), 19141924.
[14] Chien, H.-M. et al. : A 4 GHz fractional-N synthesizer for IEEE 802.11a, in Symp. on VLSI Circuits Digest of Technical Papers, Honolulu, USA, 2004.
[15] Kucharski, M.; Herzel, F.; Kissinger, D.: Time-domain simulation of quantization noise mixing and charge pump device noise in fractional-N PLLs, in Proc. of the 13th IEEE Int. New Circuits and Systems Conf. (NEWCAS), Grenoble, France, 2015.
[16] Herzel, F.; Razavi, B.: A study on oscillator jitter due to supply and substrate noise. IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process., 46 (1999), 5662.
[17] Hegazi, E.; Rael, J.; Abidi, A.: The Designer's Guide to High-Purity Oscillators, Springer, New York, 2004.
[18] Hu, K., Osmany, S.A.; Scheytt, J.C.; Herzel, F.: An integrated 10 GHz low-noise phase-locked loop with improved PVT tolerance. Analog Integr. Circuits Signal Process., 67 (2011), 319330. DOI: 10.1007/s10470-011-9622-9.
[19] Ng, H.J.; Fischer, A.; Feger, R.; Stuhlberger, R.; Maurer, L.; Stelzer, A.: A DLL-supported, low phase noise fractional-N PLL with a wideband VCO and a highly linear frequency ramp generator for FMCW radars. IEEE Trans. Circuits Syst. I: Regular Papers, 60 (2013), 32893302.
[20] Kucharski, M.; Herzel, F.: Charge pump design in 130 nm SiGe BiCMOS technology for low-noise fractional-N PLLs. Adv. Radio Sci., 13 (2015), 133139.
[21] Herzel, F.; Borngraeber, J.; Ergintav, A.; Kissinger, D.: A 17 GHz programmable frequency divider for space applications in a 130 nm SiGe technology, in IEEE Bipolar/BiCMOS and Technology Meeting (BCTM), Boston, MA, USA, 2015.
[22] Ruecker, H. et al. : A 0.13 SiGe BiCMOS technology featuring f T /f max of 240/330 GHz and gate delays below 3 ps. IEEE J. Solid-State Circuits, 45 (2010), 16781686.

Keywords

Design and layout strategies for integrated frequency synthesizers with high spectral purity

  • Frank Herzel (a1) and Dietmar Kissinger (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed