Skip to main content Accessibility help
×
Home

Antenna-in-package (AiP) in mm-wave band

  • Mahmoud Alhenawy (a1) and Martin Schneider (a1)

Abstract

We studied the viability of the embedded wafer level ball grid array (eWLB) package environment as an antenna platform for 77 GHz automotive radar sensors and the effects of package fabrication tolerances on the antenna performance. The investigation of different antenna concepts in the eWLB package and their characterization methods are addressed. The design procedures for electrically large, differentially fed loop antennas in a multilayer package structure are introduced. Two different planar antennas are developed and measured in an eWLB package showing promising results such as a gain of 9 GHz and an impedance bandwidth of 8 GHz. An acceptable antenna performance is recorded within the tolerance limits. Therefore, the eWLB package is seen as an appropriate platform for mm-wave antennas and as a good candidate for an antenna-in-package (AiP) concept.

Copyright

Corresponding author

Corresponding author: M. Alhenawy Email: mahmoud.alhenawy@hf.uni-bremen.de

References

Hide All
[1]Zhang, Y.P.; Liu, Duixian. etc: Antenna-on-chip and antenna-in-package solutions to highly integrated millimeter-wave devices for wireless communications. IEEE Trans. Antennas Propag., 57 (10): (2009), 28302841.
[2]Hasch, J.; Wostradowski, U.; Gaier, S.; Hansen, T. etc: 77 GHz radar transceiver with dual integrated antenna elements. in German Microwave Conf., Berlin, Germany, March 2010, 280283.
[3]Takeuchi, J., Hirata, A., Takahashi, H., and Kukutsu, N.: 10-Gbit/s bi-directional and 20-Gbit/s uni-directional data transmission over a 120-GHz-band wireless link using a finline ortho-mode transducer, in Microwave Conf. Proc. (APMC), 2010 Asia-Pacific, Yokohama, Japan, December 2010, 195198.
[4]Lopez, A.V., Papapolymerou, J., Akiba, A., Ikeda, K., Mitarai, S., and Ponchak, G.: 60 GHz micromachined patch antenna for wireless applications, in IEEE Int. Symp. on Antennas and Propagation (APSURSI), Washington, USA, July 2011, 515–518, doi: 10.1109/APS.2011.5996758.
[5]Carrillo-Ramirez, R. and Jackson, R.W.: A Highly Integrated Millimeter-wave Active Antenna Array Using BCB and Silicon Substrate. IEEE Trans. Microw. Theory Tech., 52 (6) (2004), 16481653.
[6]Alhenawy, M. and Schneider, M.: Integrated antennas in eWLB packages for 77 GHz and 79 GHz automotive radar sensors, in 41st European Microwave Conf. (EuMC), Manchester, United kingdom, October 2011, 1312 –1315.
[7]Fischer, A., Tong, Ziqiang, Hamidipour, A., Maurer, L., and Stelzer, A.: A 77-GHz antenna in package, in 41st European Microwave Conf. (EuMC), Manchester, United kingdom, October 2011, 1316–1319.
[8]Brunnbauer, M., Furgut, E., Beer, G., and Meyer, T.: Embedded wafer level ball grid array (eWLB), in Eighth Electronics Packaging Technology Conf., EPTC '06, Singapore, December 2006, 1–5, doi: 10.1109/EPTC.2006.342681.
[9]Meyer, T., Ofner, G., Bradl, S., Brunnbauer, M., and Hagen, R.: Embedded wafer level ball grid array (eWLB), in 10th Electronics Packaging Technology Conf., 2008. EPTC, Singapore, December 2008, 994–998, doi: 10.1109/EPTC.2008.4763559.
[10]Pressel, K., et al. : Embedded wafer level ball grid array (eWLB) technology for system integration, in IEEE CPMT Symp. Japan, 2010, August 2010, 1–4, doi: 10.1109/CPMTSYMPJ.2010.5679657.
[11]Alhenawy, M. and Schneider, M.: Rectangular waveguide to coplanar stripline transition based on a unilateral finline, in Proc. Fourth European Conf. on Antennas and Propagation (EuCAP), Prague, Czech Republic, April 2012.
[12]Pocklington, H.C.: Electrical oscillations in wires, in Cambridge Philosophical Society Proc., University Press, volume 9, 1897, 324.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed