Skip to main content Accessibility help
×
Home

Analysis of time filtering techniques for echo reduction in antenna measurements

  • Pilar González-Blanco (a1) and Manuel Sierra-Castañer (a1)

Abstract

This paper presents a review of filtering methods to eliminate echo in antenna measurements. Two different methods, fast Fourier transform and Matrix Pencil, are explained, compared, and simulated in a planar near field where other effects, such as aliasing, can and will be present if the simulation is not appropriately made and the parameters are not carefully chosen. Finally both methods are applied to real measurements of a dipole in a Microwave Vision Group multiprobe system and of a horn in a single-cut measurement. Other effects, such as window shift, may appear depending on the geometry of the system where the measurement is taken. These effects must be taken into consideration and carefully corrected.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Analysis of time filtering techniques for echo reduction in antenna measurements
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Analysis of time filtering techniques for echo reduction in antenna measurements
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Analysis of time filtering techniques for echo reduction in antenna measurements
      Available formats
      ×

Copyright

Corresponding author

Corresponding author: P. González-Blanco Email: mp.gonzalez@alumnos.upm.es

References

Hide All
[1] Clouston, E.N.; Langsford, P.A.; Evans, S.: Measurement of anechoic chamber reflections by time-domain techniques. IEE Proc. H, Microw. Antennas Propag., 135 (2) (pt. H) (1988), 9397.
[2] Nagatoshi, M.; Hirose, M.; Tanaka, H.; Kurokawa, S.; Morishita, H.: A method of pattern measurement to cancel reflection waves in anechoic chamber, in Proc. Antennas and Propagation Society Int. Symp., San Diego, CA, 5–11 July 2008, 14.
[3] Black, D.N.; Joy, E.B.: Test zone field compensation. IEEE Trans. Antennas Propag., 43 (4) (1995), 362368.
[4] Van Blaricum, M.L.; Mittra, R.: A technique for extracting the poles and residues of a system directly from its transient response. IEEE Trans. Antennas Propag., AP-23 (6) (1975), 777781.
[5] Sarkar, T.K.; Nebat, J.; Weiner, D.D.; Jain, V.K.: Suboptimal approximation/identification of transient waveforms from electromagnetic systems by pencil-of-function method. IEEE Trans. Antennas Propag., AP-28 (6) (1980), 928933.
[6] Hua, Y.; Sarkar, T.K.: Generalized pencil-of-function method for extracting poles of an EM system from its transient response. IEEE Trans. Antennas Propag., 37 (2) (1989), 229234.
[7] Sarkar, T.K.; Pereira, O.: Using the matrix pencil method to estimate the parameters of a sum of complex exponentials. IEEE Antennas Propag. Mag., 37 (1) (1995), 4855.
[8] Adve, R.S.; Sarkar, T.K.; Pereira-Filho, O.M.C.; Rao, S.M.: Extrapolation of time-domain responses from three-dimensional conducting objects utilizing the matrix pencil technique. IEEE Trans. Antennas Propag., 45 (1) (1997), 147156.
[9] Gregson, S.; Newell, A.; Hindman, G.: Reflection suppression in cylindrical near-field antenna measurement systems-cylindrical MARS, in Proc. Antenna Measurement Techniques Association, AMTA, Salt Lake City, UT, 1–6 November 2009, 119125.
[10] Hindman, G.; Newell, A.: Reflection suppression in large spherical near-field range, in Proc. Antenna Measurement Techniques Association, AMTA, Newport, RI, 30 October–4 November 2005, 270275.
[11] Hess, D.W.: The IsoFilterTM technique isolating and individual radiator from spherical near-field data measured in a contaminated environment, in 2nd Eur. Conf. on Antenna and Propagation, EuCAP 2007, Edinburgh, UK, 2007, 16.
[12] Gregson, S.F.; Newell, A.C.; Hindman, G.E.; Carey, M.J.: Application of mathematical absorber reflection suppression to planar near-field antenna measurements, in Proc. of the 5th Eur. Conf. on Antennas and Propagation (EUCAP), Rome, 2011, 34123416.
[13] Gregson, S.F.; Newell, A.C.; Hindman, G.E.; Carey, M.J.: Advances in cylindrical mathematical absorber reflection suppression, in Proc. of the 4th Eur. Conf. on Antennas and Propagation, Barcelona, Spain, 2010, 15.
[14] Cano-Fácila, F.J.; Burgos, S.; Martín, F.; Sierra-Castañer, M.: New reflection suppression method in antenna measurement systems based on diagnostic techniques. IEEE Trans. Antennas Propag., 59 (3) (2011), 941949.
[15] Sano, M.; Sierra-Castañer, M.; Hirokawa, J.; Ando, M.: A source reconstruction technique for planar arrays of wide slots, in 2015 9th Eur. Conf. on Antennas and Propagation (EuCAP), Lisbon, 2015, 12.
[16]TICRA Diatool Software. http://www.ticra.com.
[17] Araque Quijano, J.L.; Scialacqua, L.; Zackrisson, J.; Foged, L.J.; Sabbadini, M.; Vecchi, G.: Suppression of undesired radiated fields based on equivalent currents reconstruction from measured data. IEEE Antenna Wireless Propag. Lett., 10 (2011), 314317.
[18] Foged, L.J. et al. : Echo suppression by spatial-filtering techniques in advanced planar and spherical near-field antenna measurements [AMTA Corner]. IEEE Antennas Propag. Mag. 55 (5) (2013), 235242.
[19] Young, J.D.; Svoboda, D.E.; Burnside, W.D.: A comparison of time- and frequency-domain measurement techniques in antenna theory. IEEE Trans. Antennas Propag., AP-21 (4) (1973), 581583.
[20] Sierra-Castañer, M.; Salmerón, T.; Cano-Fácila, F.J.; Burgos, S.; Foged, L.J.; Saccardi, F.: Comparison of echo suppression techniques for far field antenna measurements, in 35th ESA Antenna Workshop on Antenna and Free Space RF Measurements, Noordwijk, The Netherlands, September 2013, 5 pp.
[21] Aubin, J.; Winebrand, M.; Soerens, R.; Vinogradov, V.: Accurate near-field measurements using time-gating, in Antenna Measurement Techniques Association Annual Symp. Proc., November 2007, 362365.
[22] Loredo, S.; Pino, M.R.; Las-Heras, F.; Sarkar, T.K.: Echo identification and cancellation techniques for antenna measurement in non-anechoic test sites. IEEE Antennas Propag. Mag., 46 (1) (2004), 100107.
[23] Loredo, S.; Pino, M.R.; Las-Heras, F.; Sarkar, T.K.: Cancelación de ecos en cámaras de medida no anecoicas, in Actas del XVIII Symp. Nacional de la Unión Científica de Radio, URSI 2003, Spain, 2003, pp. 126–.
[24] Sierra-Castañer, M.; González-Blanco, P.; López Morales, M.J.; Saccardi, F.; Foged, L.J.: Time and spatial filtering for echo reduction in antenna measurements, in Antenna Measurement Techniques Association, AMTA, Long Beach, California, USA, 1–16 October 2015, 15.
[25] González-Blanco, P.; Sierra-Castañer, M.: Time filtering techniques for echo reduction in antenna measurements, in 2016 10th Eur. Conf. on Antennas and Propagation (EuCAP), Davos, 2016, 13.
[26] Fourestié, B.; Altman, Z.; Wiart, J.; Azoulay, A.: On the use of the matrix-pencil method to correlate measurements at different test sites. IEEE Trans. Antennas Propag., 47 (10) (1999), 15691573.

Keywords

Analysis of time filtering techniques for echo reduction in antenna measurements

  • Pilar González-Blanco (a1) and Manuel Sierra-Castañer (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed