Skip to main content Accessibility help
×
Home

Analysis of elliptical structures with constant axial ratio by Body-of-Revolution Finite Element Method and Transformation Optics

  • G. G. Gentili (a1), M. Khosronejad (a1), G. Pelosi (a2) and S. Selleri (a2)

Abstract

This paper describes a method to analyze open or closed elliptical structures with constant axial ratio by a Body-of-Revolution (BoR) Finite Element Method (FEM). The method is based on Transformation Optics, a coordinate transformation that maps the elliptical shape to a circular shape, for which BoR-FEM represents a greatly efficient tool for the analysis.

Copyright

Corresponding author

Author for correspondence: G.G. Gentili E-mail:gianguido.gentili@polimi.it

References

Hide All
1Pelosi, G, Coccioli, R and Selleri, S (2009) Quick finite elements for electromagnetic waves, 2nd edn. Boston, MA: Artech House.
2Greenwood, AD and Jin, J-M (1999) A novel efficient algorithm for scattering from a complex BOR using mixed finite elements and cylindrical PML. IEEE Transactions on Antennas and Propagation 47, 620629.
3Gentili, GG, Bolli, P, Nesti, R, Pelosi, G and Toso, L (2007) High-order FEM mode matching analysis of circular horns with rotationally symmetric dielectrics. IEEE Transactions on Antennas and Propagation 55, 29152918.
4Gentili, GG, Accatino, L and Bertin, G (2016) The generalized 2.5-D finite-element method for analysis of waveguide components. IEEE Transactions on Microwave Theory and Techniques 64, 23922400.
5Gentili, GG, Khosronejad, M, , Nesti, R, Pelosi, G and Selleri, S (2018) An efficient 2.5-D finite-element approach based on transformation optics for the analysis of elliptical horns. IEEE Transactions on Antennas and Propagation 66, 47824790.
6Kundtz, NB, Smith, DR and Pendry, JB (2011) Electromagnetic design with transformation optics. Proceedings of the IEEE 99, 16221633.
7Ma, HF and Cui, TJ (2010) Three-dimensional broadband and broad-angle transformation-optics lens. Nature communications 1, 124.
8Quevedo-Teruel, O, Tang, W, Mitchell-Thomas, RC, Dyke, A, Dyke, H, Zhang, L, Haq, S and Hao, Y (2013) Transformation optics for antennas: why limit the bandwidth with metamaterials? Scientific Reports 3, article number 1903, pp. 15.
9Mateo-Segura, C, Dyke, A, Dyke, H, Haq, S and Hao, Y (2014) Flat Luneburg lens via transformation optics for directive antenna applications. IEEE Transactions on Antennas and Propagation 62 19451953.
10Keivaan, A, Fakheri, MH, Abdolali, A and Oraizi, H (2017) Design of coating materials for cloaking and directivity enhancement of cylindrical antennas using transformation optics. IEEE Antennas and Wireless Propagation Letters 16 31223125.
11Schurig, D, Mock, JJ, Justice, BJ, Cummer, SA, Pendry, JB, Starr, AF and Smith, DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314 977.
12Ma, HF, Jiang, WX, Yang, XM, Zhou, XY and Cui, TJ (2009) Compact-sized and broadband carpet cloak and free-space cloak. Optics Express 17 1994719959.
13Mitchell-Thomas, RC, Ebrahimpouri, M and Quevedo-Teruel, O (2015) Altering antenna radiation properties with transformation optics, 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, 2015, pp. 12.
14Kwon, D (2012) Quasi-conformal transformation optics lenses for conformal arrays. IEEE Antennas and Wireless Propagation Letters 11 11251128.
15Clarricoats, PJB and Olver, AD (1984) Corrugated Horns for Microwave Antennas, vol. 18, IEE Electromagnetic waves series. London, UK: Peter Peregrinus Ltd.
16Tomassoni, C, Mongiardo, M, Kuhn, E and Omar, AS (2001) Generalized Multipole Technique – Mode-Matching Technique Hybrid Method for Elliptical Stepped Horn Antennas Analysis, 31st European Microwave Conference, London, England, 2001, pp. 14.
17Teixeira, FL and Chew, WC (1997) Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates. IEEE Microwave and Guided Wave Letters 7, 371373.
18Yang, W, Li, K and Li, K (2017) A parallel solving method for blocktridiagonal equations on CPU-GPU heterogeneous computing systems. Journal of Supercomputing 73, 17601781.
19Love, AEH (1901) The integration of equations of propagation of electric waves. Philosophical Transactions of the Royal Society, London, Series A 197 145.
20Gentili, GG, Nesti, R, Pelosi, G and Selleri, S (2017) A perturbative approach for the determination of modes in slightly elliptical waveguides. 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), Verona, 2017, pp. 653656.
21Gentili, GG, Pelosi, G and Selleri, S (2015) A line integral perturbative approach to the computation of cutoff frequencies in deformed waveguides. IEEE Microwave and Wireless Components Letters 25, 421423.

Keywords

Analysis of elliptical structures with constant axial ratio by Body-of-Revolution Finite Element Method and Transformation Optics

  • G. G. Gentili (a1), M. Khosronejad (a1), G. Pelosi (a2) and S. Selleri (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed