Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-21T23:59:49.222Z Has data issue: false hasContentIssue false

Analysis and design of a triple band metamaterial simplified CRLH cells loaded monopole antenna

Published online by Cambridge University Press:  22 June 2016

Mahmoud Abdelrahman Abdalla*
Affiliation:
Electromagnetic Waves Group, Department of Electronic Engineering, Military Technical College, Cairo, Egypt
Zhirun Hu
Affiliation:
Microwave and Communication Systems Group, School of Electrical and Electronic Engineering, University of Manchester, Manchester, UK
Cahyo Muvianto
Affiliation:
Microwave and Communication Systems Group, School of Electrical and Electronic Engineering, University of Manchester, Manchester, UK
*
Corresponding author: M.A. Abdalla Email: maaabdalla@ieee.org

Abstract

The design and analysis of meta-material inspired loaded monopole antenna for multiband operation are reported. The proposed antenna consists of multi resonators inspired from half mode composite right/left handed cells, which has a simple structure, compact size, and provides multiband functionalities. As a proof of concept, a triple band antenna covering all possible WiMAX operating bands, has been designed, fabricated, and characterized. The hosting monopole patch itself generates resonance for 3.3–3.8 GHz band, whereas the loaded metamaterial cells add extra resonance frequencies. The loading of two resonator cells introduces two extra resonances for 2.5–2.7 GHz and 5.3–5.9 GHz bands, respectively. The antenna's operating principle and design procedures with the aid of electromagnetic full wave simulation and experimental measurements are presented. The antenna has good omnidirectional patterns at all three bands. The monopole patch size is 13.5 × 6.5 mm2 and the whole antenna size (including the feed line) is 35 × 32 mm2. Compared with conventional single band microstrip patch radiator, the radiator size of this antenna is only 8.5% at 2.5 GHz, 17% at 3.5 GHz, and 37% at 5.5 GHz.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Chen, X.: Ultra-wideband antennas and propagation for communications, radar and imaging, WILEY, 2007.Google Scholar
[2] Wong, K.: Compact and Broadband Microstrip Antennas, John Wiley & Sons, Inc., New York, 2002.Google Scholar
[3] Weiner, M.M.: Monopole Antennas, Marcel Dekker Int, New York, NY, 2003.Google Scholar
[4] Park, Y.K.; Kang, D.; Sung, Y.: Compact folded triband monopole antenna for USB dongle applications. IEEE Antennas Wireless Propag. Lett., 11 (2012), 228231.Google Scholar
[5] Sim, D.; Moon, J.; Park, S.: A wideband monopole antenna for PCS/IMT-2000/Bluetooth applications. IEEE Antennas Wireless Propag. Lett., 3 (1) (2004), 4547.Google Scholar
[6] Deng, C.; Liu, X.L.; Zhang, Z.; Tentzeris, M.M.: A miniascape-like triple-band monopole antenna for WBAN applications. IEEE Antennas Wireless Propag. Lett., 11 (2012), 13301333.CrossRefGoogle Scholar
[7] Yoon, J.H.; Rhee, Y.C.: A modified three-circular-ring monopole antenna for WLAN/WiMAX triple-band operations 2013, Asia-Pacific Microwave Conf. Proc. (APMC), 2013, 11421144.Google Scholar
[8] Huang, H.; Zhang, S.: A compact triple-band monopole antenna for WLAN/WIMAX application, 2013 Proc. of the Int. Symp. on Antennas & Propagation (ISAP), vol. 01, 2013, 454457.Google Scholar
[9] Liu, W.; Wu, C.; Dai, Y.: Design of triple-frequency microstrip-fed monopole antenna using defected ground structure. IEEE Trans. Antennas Propag., 59 (7) (2011), 24572463.Google Scholar
[10] Chang, T.-H.; Kiang, J.-F.: Compact multi-band H-shaped slot antenna. IEEE Trans Antennas Propag., 61 (8) (2013), 43454349.Google Scholar
[11] Sun, X.L.; Zhang, J.; Cheung, S.W.; Yuk, T.I.: A triple-band monopole antenna for WLAN and WiMAX applications. 2012 IEEE Antennas and Propagation Society Int. Symp. (APSURSI), USA, 2012, 12.Google Scholar
[12] Moeikham, P., Mahatthanajatuphat, C., Akkaraekthalin, P.: A triple band printed monopole antenna for WLAN/WiMAX applications, 2012 Int. Symp. on Antennas and Propagation (ISAP), Japan, 2012, 295298.Google Scholar
[13] Mehdipour, A.; Sebak, A.; Trueman, C.W.; Denidni, T.A.: Compact multiband planar antenna for 2.4/3.5/5.2/5.8-GHz wireless applications. IEEE Antennas Wireless Propag. Lett., 11 (2012), 144147.Google Scholar
[14] Moosazadeh, M.; Kharkovsky, S.: Compact and small planar monopole antenna with symmetrical L- and U-shaped slots for WLAN/WiMAX applications. IEEE Antennas Wireless Propag. Lett., 13 (2014), 388391.Google Scholar
[15] Chen, C.; Sim, C.; Chen, F.: A novel compact quad-band narrow strip-loaded printed monopole antenna. IEEE Antennas Wireless Propag. Lett., 8 (2009), 974976.Google Scholar
[16] Niroo-Jazi, M.; Denidni, T.A.: A new triple-band circular ring patch antenna with monopole-like radiation pattern using a hybrid technique. IEEE Trans. Antennas Propag., 59 (10), (2011), 35123517.Google Scholar
[17] Caloz, C.; Itoh, T.: Electromagnetic Metamaterials Transmission Line Theory and Microwave Applications, John Wiey & Sons, New Jersey, 2006.Google Scholar
[18] Eleftheriades, G.V.; Balmain, K.G.: Negative Refractive Metamaterials, John Wiey & Sons, New Jersey, 2005.Google Scholar
[19] Marqués, R.; Martín, F.; Sorolla, M.: Metamaterials with Negative Parameters Theory, Design and Microwave Applications, John Wiey & Sons, New Jersey, 2008.Google Scholar
[20] Capolino, F.: Theory and Phenomena of Metamaterials, CRC Press, Boca Raton, FL, 2009.Google Scholar
[21] Karimian, S.; Hu, Z.; Abdalla, M.A.: Compact half-wavelength metamaterial stepped impedance resonator (SIR), in Digest IEEE AP-S Int. Antennas and Propogation Symp., USA, 2011, 29512953.Google Scholar
[22] Jung, Y.K.; Lee, B.: Design of compact and wideband metamaterial balun based on closed form solutions. Microw. Opt. Technol. Lett., 52 (2010), 11531156.Google Scholar
[23] Taravati, S.; Khalaj-Amirhosseini, M.: Compact dual-band stubless branch-line coupler. J. Electromagn. Waves Appl., 26 (10) (2012), 13231331.Google Scholar
[24] Abdalla, M.A.; Wahba, W.; Elregaily, H.; Allam, A.A.; Abdel Nazir, A.: A compact and wideband SIW metamaterial impedance transformer, 2nd MeCAP, Cairo, Egypt, 2012, 14.Google Scholar
[25] Abdalla, M.A.; Hu, Z.: Compact and broadband left handed CPW power divider/combiner for C/X bands, 29th National Radio Science Conf. (NRSC2011), Cairo, Egypt, April 10–12, 2012, 2936.Google Scholar
[26] Abdalla, M.A.; Hu, Z.: Ferrite tunable metamaterial phase shifter, 2010 IEEE AP-S Int. Antenna and Propagation Symp. Digest, Toronto, Canada, July 11–17, 2010, 14.Google Scholar
[27] Abdalla, M.A.; Hu, Z.: Compact novel CPW ferrite coupled line circulator with left-handed power divider/combiner, in Digest European Microwave Week, EuMW2011, UK, 2011, 794–707.Google Scholar
[28] Luo, S.; Zhu, L.; Sun, S.: A dual-band ring-resonator bandpass filter based on two pairs of degenerate modes. IEEE Trans. Microw. Theory Tech., 58 (2010), 34273432.Google Scholar
[29] Karimian, S.; Hu, Z.: Miniaturized composite right/left-handed stepped-impedance resonator bandpass filter. IEEE Microw. Wireless Compon. Lett., 22 (8) (2012), 400402.Google Scholar
[30] Abdalla, M.; Hassan, A.Y.; Galal Eldin, A.M.: A compact high selective coupled gap CRLH TL based bandpass filter, 2015 9th Int. Congress on Advanced Electromagnetic Material in Microwave and Optics, UK, 7–12 September 2015, 352354.Google Scholar
[31] Erentok, A.; Ziolkowski, R.W.: Metamaterial-inspired efficient electrically small antennas. IEEE Trans. Antennas Propag., 56 (3) (2008), 691707.CrossRefGoogle Scholar
[32] Pyo, S.; Han, S.M.; Baik, J.W.; Kim, Y.S.: A slot-loaded composite right/left-handed transmission line for a zeroth-order resonant antenna with improved efficiency. IEEE Trans. Microw. Theory Tech., 57 (11) (2009), 27752782.Google Scholar
[33] Kim, T.G.; Lee, B.: Metamaterial-based compact zeroth-order resonant antenna. Electron. Lett., 45 (1) (2009), 1213.Google Scholar
[34] Abdalla, M.; Hu, Z.; Compact and tunable metamaterial antenna for multi-band wireless communication applications, 2011 IEEE AP-S Int. Antenna and Propagation Symp. Digest, Spokane, USA, 2011, 29512953.Google Scholar
[35] Abdalla, M.: A dual mode CRLH TL metamaterial antenna, 2014 IEEE AP-S Int. Antenna and Propagation Symp. Digest, Memphis, USA, 2014, 793794.Google Scholar
[36] Abdalla, M.A.; Ibrahim, A.A.: Compact and closely spaced meta-material MIMO antenna with high isolation for wireless applications. IEEE Wireless Propag. Lett., 12 (2013), 14521455.Google Scholar
[37] Dong, Y.; Itoh, T.: Miniaturized substrate integrated waveguide slot antennas based on negative order resonance. IEEE Trans. Antennas Propag., 58 (12) (2010), 38563864.Google Scholar
[38] Ibrahim, W.; Abdalla, M.; Allam, A.; Mohamed, A.; Elregeily, H.: A compact and dual band metamaterial substrate integrated waveguide antenna, 2013 IEEE AP-S Int. Antenna and Propagation Symp. Digest, Orlando, USA, June 7–13, 2013, 966967.Google Scholar
[39] Amani, N.; Kamyab, M.; Jafargholi, A.; Hosseinbeig, A.; Meiguni, J.S.: Compact tri-band metamaterial-inspired antenna based on CRLH resonant structures. Electron. Lett., 50 (12) (2014), 847848.Google Scholar
[40] Pham, B.L.: Triple bands antenna and high efficiency rectifier design for RF energy harvesting at 900, 1900 and 2400 MHz, 2013 IEEE MTT-S Int. Microwave Symp. Digest (IMS), 2013, 13.Google Scholar
[41] Abdalla, M.; Sadek, F.H.: Compact triple-band left-handed antenna For GSM/WiMAX applications, 2015 9th Int. Congress on Advanced Electromagnetic Material in Microwave and Optics, UK, September 2015, 295297.Google Scholar
[42] Saurav, K.; Sarkar, D.; Srivastava, K.V.: CRLH unit-cell loaded multiband printed dipole antenna. IEEE Antennas Wireless Propag. Lett., 13 (2014), 852855.CrossRefGoogle Scholar
[43] Abdalla, M.; El-Dahab, M.; Ghouz, M.: Dual/Triple band printed dipole antenna loaded with CRLH cells, 2014 IEEE AP-S Int. Antenna and Propagation Symp. Digest, Memphis, USA, 2014, 10071008.Google Scholar
[44] Ibrahim, A.A.; Safwat, A.M.E.; El-Hennawy, H.: Triple-band microstrip-fed monopole antenna loaded with CRLH unit cell. IEEE Antennas Wireless Propag. Lett., 10 (2011), 15471550.Google Scholar
[45] Ibrahim, A.A.; Safwat, A.M.E.: Microstrip-fed monopole antennas loaded with CRLH unit cells. IEEE Trans. Antennas Propag., 60 (9) (2012), 40274036.Google Scholar
[46] Bala, B.D.; Rahim, M.K.A.; Murad, N.A.: A compact triple mode metamaterial inspired-monopole antenna for wideband applications, 2013 Proceedings of the Int. Symp. on Antennas & Propagation (ISAP), vol. 2, 2013, 11271130.Google Scholar
[47] Alù, A.; Engheta, N.: Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency. IEEE Trans. Antennas Propag., 51 (10) (2003), 25582571.Google Scholar
[48] Abdalla, M.; Ibrahim, A.: Design of close, compact, and high isolation meta-material MIMO antennas, 2013 IEEE AP-S Int. Antenna and Propagation Symp. Digest, Orlando, USA, 2013, 186187.Google Scholar
[49] Wei, K. et al. : A wideband MNG-TL dipole antenna with stable radiation patterns. IEEE Trans. Antennas Propag., 61 (5) (2013), 24182424.Google Scholar
[50] Niu, B.; Feng, Q.; Shu, P.: Epsilon negative zeroth-and first-order resonant antennas with extended bandwidth and high efficiency. IEEE Trans. Antennas Propag., 61 (12) (2013), 58785884.CrossRefGoogle Scholar
[51] Huang, J.Q.; Chu, Q.X.: Compact epsilon negative zeroth order resonator antenna with higher radiation efficiency. Microw. Opt. Technol. Lett., 53 (4) (2011), 897900.Google Scholar
[52] Abdalla, M.A.; Hu, Z.: A compact dual band meta-material antenna for wireless applications, 2012 Loughborough Antennas & Propagation Conf., Loughborough, UK, 2012, 14.CrossRefGoogle Scholar
[53] Abdalla, M.; Fouad, M.; Ahmed, A.; Hu, Z.: A new compact microstrip triple band antenna using half mode CRLH transmission line, 2013 IEEE AP-S Int. Antenna and Propagation Symp. Digest, Orlando, USA, 2013, 634635.Google Scholar
[54] Zhu, J.; Eleftheriades, G.V.: Dual-band metamaterial-inspired small monopole antenna for WiFi applications. Electron. Lett., 45 (22) (2009), 11041106.CrossRefGoogle Scholar
[55] Abdalla, M.A.; Abdelnaby, U.; Mitkees, A.A.: Compact and triple band meta-material antenna for All WiMAX applications, 2012 Int. Symp. on Antennas and Propagation (ISAP), 2012, 11761179.Google Scholar
[56] Rennings, A.; Liebig, T.; Caloz, C.; Waldow, P.: MIM CRLH Series Mode Zeroth Order Resonant Antenna (ZORA) implemented in LTCC Technology, APMC 2007. Asia-Pacific Microwave Conf., 2007, 14.Google Scholar
[57] Hong, J.: Microstrip Filters for RF/Microwave Application, Wiles and Sons, New Jersey, 2011.Google Scholar
[58] Balanis, C.A.: Antenna Theory: Analysis and Design, 3rd ed, John Wiley & Sons, Hoboken, 2012, 867868.Google Scholar