Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-30T09:46:40.737Z Has data issue: false hasContentIssue false

Analog-type millimeter-wave phase shifters based on MEMS tunable high-impedance surface and dielectric rod waveguide

Published online by Cambridge University Press:  06 October 2011

Dmitry Chicherin*
Affiliation:
Department of Radio Science and Engineering/SMARAD, Aalto University School of Electrical Engineering, P.O. Box 13000, FI-00076 AALTO, Finland. Phone: +358 50 3667637
Mikael Sterner
Affiliation:
Microsystem Technology Lab, KTH – Royal Institute of Technology, 10044 Stockholm, Sweden
Dmitri Lioubtchenko
Affiliation:
Department of Radio Science and Engineering/SMARAD, Aalto University School of Electrical Engineering, P.O. Box 13000, FI-00076 AALTO, Finland. Phone: +358 50 3667637
Joachim Oberhammer
Affiliation:
Microsystem Technology Lab, KTH – Royal Institute of Technology, 10044 Stockholm, Sweden
Antti V. Räisänen
Affiliation:
Department of Radio Science and Engineering/SMARAD, Aalto University School of Electrical Engineering, P.O. Box 13000, FI-00076 AALTO, Finland. Phone: +358 50 3667637
*
Corresponding author: D. Chicherin Email: dmitry.chicherin@aalto.fi

Abstract

Millimeter-wave phase shifters are important components for a wide scope of applications. An analog-type phase shifter for W-band has been designed, analyzed, fabricated, and measured. The phase shifter consists of a reconfigurable high-impedance surface (HIS) controlled by micro-electromechanical system (MEMS) varactors and placed adjacent to a silicon dielectric rod waveguide. The analog-type phase shift in the range of 0–32° is observed at 75 GHz whereas applying bias voltage from 0 to 40 V to the MEMS varactors. The insertion loss of the MEMS tunable HIS is between 1.7 and 5 dB, depending on the frequency.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Hung, J.-J.; Dussopt, L.; Rebeiz, G.M.: Distributed 2- and 3-bit W-band MEMS phase shifters on glass substrates. IEEE Trans. Microw. Theory Tech., 52 (2) (2004), 600606.CrossRefGoogle Scholar
[2]Shih, S.E. et al. : A W-band 4-bit phase shifter in multilayer scalable array systems, in 2007 IEEE Compound Semiconductor Integrated Circuit Symp. Digest, Portland, OR, USA, 14–17 October, 2007, paper 10.1109.CrossRefGoogle Scholar
[3]Somjit, N.; Stemme, G.; Oberhammer, J.: Binary-coded 4.25-bit W-band monocrystalline–silicon MEMS multistage dielectric-block phase shifters. IEEE Trans. Microw. Theory Tech., 57 (11) (2009), 28342840.CrossRefGoogle Scholar
[4]Kozyrev, A. et al. : Millimeter-wave loaded line ferroelectric phase shifters. Integr. Ferroelectr., 55 (1) (2003), 847852.CrossRefGoogle Scholar
[5]Chicherin, D.; Dudorov, S.; Lioubtchenko, D.; Ovchinnikov, V.; Tretyakov, S.; Räisänen, A.V.: MEMS-based high-impedance surfaces for millimetre and submillimetre wave applications. Microw. Opt. Technol. Lett., 48 (12) (2006), 25702573.CrossRefGoogle Scholar
[6]Chicherin, D.; Dudorov, S.; Lioubtchenko, D.; Ovchinnikov, V.; Räisänen, A.V.: Millimetre wave phase shifters based on a metal waveguide with a MEMS-based high-impedance surface, in Proc. of the 36th European Microwave Conf., Manchester, UK, September 10–15, 2006, pp. 372375.CrossRefGoogle Scholar
[7]Chicherin, D.; Dudorov, S.; Lioubtchenko, D.; Ovchinnikov, V.; Räisänen, A.V.: Characterisation and measurements of a multilayer high-impedance surface at W-band, in Proc. 1st Int. Congress on Advanced Electromagnetic Materials in Microwave and Optics, Rome, Italy, October 22–26, 2007, pp. 891894.Google Scholar
[8]Chicherin, D.; Dudorov, S.; Sterner, M.; Oberhammer, J.; Räisänen, A.V.: Micro-fabricated high-impedance surface for millimeter wave beam steering applications, in Proc. of the 33rd Int. Conf. on Infrared, Millimeter, and Terahertz Waves, Pasadena, CA, USA, 15–19 September, 2008, PID659522.pdf, Keynote presentation.CrossRefGoogle Scholar
[9]Sterner, M.; Chicherin, D.; Räisänen, A.V.; Stemme, G.; Oberhammer, J.: RF MEMS high-impedance tuneable metamaterials for millimeter-wave beam steering, in Proc. of the IEEE MEMS Conf., Sorrento, Italy, January 25–29, 2009, pp. 896899.Google Scholar
[10]Chicherin, D.; Sterner, M.; Oberhammer, J.; Dudorov, S.; Åberg, J.; Räisänen, A.V.: Analog type millimeter wave phase shifters based on MEMS tunable high-impedance surface in rectangular metal waveguide, in IEEE Int. Microwave Symp. Digest, Anaheim, CA, USA, May 25–28, 2010, pp. 6164.CrossRefGoogle Scholar
[11]Sterner, M. et al. : Integration of MEMS reconfigurable reflective surfaces in rectangular waveguide stubs for W-band phase-shifters, in Proc. of Asia Pacific Microwave Conf., Yokohama, Japan, December 7–10, 2010, pp. 18251828.Google Scholar
[12]Chicherin, D. et al. : MEMS based high-impedance surface for millimetre wave dielectric rod waveguide phase shifter, in Proc. of the 40th European Microwave Conf., Paris, France, September 28–30, 2010, pp. 950953.Google Scholar
[13]Sievenpiper, D.: High-impedance electromagnetic surfaces, Ph.D. Dissertation, Dept. Elect. Eng., Univ. California, Los Angeles, CA, 1999.Google Scholar
[14]Sievenpiper, D.; Zhang, L.; Broas, R.F.J.; Alexpolous, N.G.; Yablonovitch, E.: High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech., 47 (11) (1999), 20592074.CrossRefGoogle Scholar
[15]Sievenpiper, D.F.: Forward and backward leaky wave radiation with large effective aperture from an electronically tunable surface. IEEE Trans. Antennas Propag., 53 (1) (2005), 236247.Google Scholar
[16]Sievenpiper, D. et al. : Electronic beam steering using a varactor-tuned impedance surface, in IEEE Int. Symp. of Antenna and Propagation Society Dig., Boston, MA, USA, 8–13 July, 2001, vol. 1, pp. 174177.Google Scholar
[17]Higgins, J.A.; Xin, H.; Sailer, A.; Rosker, M.: Ka-band waveguide phase shifter using tunable electromagnetic crystal sidewalls. IEEE Trans. Microw. Theory Tech., 51 (4) (2003), 12811288.CrossRefGoogle Scholar
[18]Rebeiz, G.M.: RF MEMS Theory, Design, and Technology, John Wiley & Sons, Hoboken, 2003.CrossRefGoogle Scholar
[19]Lioubtchenko, D.; Dudorov, S.; Mallat, J.; Tuovinen, J.; Räisänen, A.V.: Low loss sapphire waveguides for 75–110 GHz frequency range. IEEE Microw. Wirel. Compon. Lett., 11 (6) (2001), 252254.CrossRefGoogle Scholar