Skip to main content Accessibility help
×
×
Home

An improved gain-phase error self-calibration method for robust DOA estimation

  • Wencan Peng (a1), Chenjiang Guo (a1), Min Wang (a2) and Yuteng Gao (a1)

Abstract

A novel online antenna array calibration method is presented in this paper for estimating direction-of-arrival (DOA) in the case of uncorrelated and coherent signals with unknown gain-phase errors. Conventional calibration methods mainly consider incoherent signals for uniform linear arrays with gain-phase errors. The proposed method has better performance not only for uncorrelated signals but also for coherent signals. First, an on-grid sparse technique based on the covariance fitting criteria is reformulated aiming at gain-phase errors to obtain DOA and the corresponding source power, which is robust to coherent sources. Second, the gain-phase errors are estimated in the case of uncorrelated and coherent signals via introducing an exchange matrix as the pre-processing of a covariance matrix and then decomposing the eigenvalues of the covariance matrix. Those parameters estimate values converge to the real values by an alternate iteration process. The proposed method does not require the presence of calibration sources and previous calibration information unlike offline ways. Simulation results verify the effectiveness of the proposed method which outperforms the traditional approaches.

Copyright

Corresponding author

Author for correspondence: Chenjiang Guo, E-mail: cjguo@nwpu.edu.cn

References

Hide All
1.Godara, LC (1997) Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations. Proceedings of the IEEE 85, 11951245.
2.Swindlehurst, AL and Kailath, T (1992) A Performance analysis of subspace-based method in the presence of model errors, part I: the MUSIC algorithm. IEEE Transactions on Signal Processing 40, 17581774.
3.Osman, L, Sfar, I and Gharsallah, A (2015) The application of high-resolution methods for DOA estimation using a linear antenna array. International Journal of Microwave and Wireless Technologies 7, 8794.
4.Roy, R and Kailath, T (2009) ESPRIT-Estimation of signal parameters via rotational invariance techniques. Adaptive Antennas for Wireless Communications 37, 224235.
5.Zoltowski, MD, Haardt, M and Mathews, CP (1996) Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT. IEEE Transactions on Signal Processing 44, 316328. https://doi.org/10.1109/78.485927.
6.Ma, X, Dong, X and Xie, Y (2016) An improved spatial differencing method for DOA estimation with the coexistence of uncorrelated and coherent signals. IEEE Sensors Journal 16, 37193723.
7.Vikas, B and Vakula, D (2017) Performance comparison of MUSIC and ESPRIT algorithms in presence of coherent signals for DoA estimation. In 2017 Int. Conf. Electron. Commun. Aerosp. Technol., pp. 403405.
8.Candes, EJ and Wakin, MB (2008) An introduction to compressive sampling. IEEE Signal Processing Magazine 25, 2130.
9.Carlin, M, Rocca, P, Oliveri, G, Viani, F and Massa, A (2013) Directions-of-arrival estimation through Bayesian compressive sensing strategies. IEEE Transactions on Antennas and Propagation 61, 38283838.10.1109/TAP.2013.2256093
10.Yang, Z, Li, J, Stoica, P and Xie, L (2016) Sparse methods for direction-of-arrival estimation. arXiv preprint arXiv:1609.09596.
11.Stoica, P, Babu, P and Li, J (2011) SPICE: a novel covariance-based sparse estimation method for array processing. IEEE Transactions on Signal Processing 59, 629638.
12.Stoica, P and Babu, P (2012) SPICE and LIKES: two hyperparameter-free methods for sparse-parameter estimation. Signal Processing 92, 15801590.
13.Cui, H, Duan, H and Liu, H (2016) Off-grid DOA estimation using temporal block sparse Bayesian inference. 2016 IEEE Int. Conf. Digit. Signal Process., pp. 204207.
14.Yang, Z, Xie, L and Zhang, C (2013) Off-grid direction of arrival estimation using sparse Bayesian inference. IEEE Transactions on Signal Processing 61, 3843.
15.Yang, Z, Xie, L and Zhang, C (2014) A discretization-free sparse and parametric approach for linear array signal processing. IEEE Transactions on Signal Processing 62, 49594973.
16.Yang, Z and Xie, L (2017) On gridless sparse methods for multi-snapshot direction of arrival estimation. Circuits, Systems, and Signal Processing 36, 33703384.
17.Zhou, H and Wen, B (2014) Calibration of antenna pattern and phase errors of a cross-loop/monopole antenna array in high-frequency surface wave radars. IET Radar, Sonar & Navigation 8, 407414.
18.Lemma, AN, Deprettere, EF and van der Veen, AJ (1999) Experimental analysis of antenna coupling for high-resolution DOA estimation algorithms. 1999 2nd IEEE Work. Signal Process. Adv. Wirel. Commun. (Cat. No. 99EX304), pp. 362365.
19.Peng, W, Gao, Y, Qu, Y and Guo, C (2017) Array calibration with sensor gain and phase errors using invasive weed optimization algorithm. 2017 Sixth Asia-Pacific Conf. Antennas Propag., pp. 13.
20.Dai, Z, Su, W, Gu, H and Li, W (2016) Sensor gain-phase errors estimation using disjoint sources in unknown directions. IEEE Sensors Journal 16, 37243730.
21.Weiss, AJ and Friedlander, B (1990) Eigenstructure methods for direction finding with sensor gain and phase uncertainties. Circuits, Systems and Signal Processing 9, 271300.
22.Li, Y and Er, MH (2006) Theoretical analyses of gain and phase error calibration with optimal implementation for linear equispaced array. IEEE Transactions on Signal Processing 54, 712723.
23.Liao, B and Chan, SC (2012) Direction finding with partly calibrated uniform linear arrays. IEEE Transactions on Antennas and Propagation 60, 922929.
24.Liu, A, Liao, G, Zeng, C, Yang, Z and Xu, Q (2011) An eigenstructure method for estimating DOA and sensor gain-phase errors. IEEE Transactions on Signal Processing 59, 59445956.
25.Hu, W and Xu, G (2018) DOA estimation with double L-shaped array based on Hadamard product and joint diagonalization in the presence of sensor gain-phase errors. Multidimensional Systems and Signal Processing.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Microwave and Wireless Technologies
  • ISSN: 1759-0787
  • EISSN: 1759-0795
  • URL: /core/journals/international-journal-of-microwave-and-wireless-technologies
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed