Skip to main content Accessibility help
×
Home

An efficient W-band InP DHBT digital power amplifier

  • Andreas Wentzel (a1), Maruf Hossain (a1), Dimitri Stoppel (a1), Nils Weimann (a1), Viktor Krozer (a1) and Wolfgang Heinrich (a1)...

Abstract

This paper presents for the first time high-efficiency W-band power amplifiers (PAs), the design of which follows the digital PA (DPA) design concept. Two DPAs with different output networks have been realized: a single-band version (S-DPA) for 95 GHz and a dual-band design (D-DPA) for signal frequencies fS of 68 GHz (first band) and 76 GHz (second band), respectively. The PAs are realized as monolithic microwave-integrated circuits (MMICs) in a 0.8 μm InP DHBT transferred-substrate process. They utilize a double-emitter-finger DHBT unit cell with an emitter area of 2 × 0.8 × 6 μm3 each. In contrast to the usual W-band PAs, the proposed single-stage amplifier MMICs do not apply any special reactive matching for the transistor, which leads to very compact chip sizes of 0.27 mm2 (S-DPA) and 0.39 mm2(D-DPA). The S-DPA includes one band-pass filter (BPF) at the output with 0.6 dB insertion loss (IL) and 24 dB input return loss (RL) at the signal frequency of 95 GHz. The dual-band BPF shows 0.7 dB IL in both bands with a RL of more than 21 dB each. Applying an overdriven sinusoidal input signal to emulate digital operation the DPAs achieve a maximum output power of 14.4 dBm and power-added efficiency of 31% when using the single-band configuration. Collector efficiencies of more than 80% and the flexible multi-band operation demonstrated prove the great potential of the digital PA concept for future high-speed communications.

Copyright

Corresponding author

Corresponding author: A. Wentzel Email: andreas.wentzel@fbh-berlin.de

References

Hide All
[1] Samoska, L.: Towards terahertz MMIC amplifiers: present status and trends, in IEEE MTT-S Int. Microwave Symp. Digest, San Francisco, 2006, 333336.
[2] Song, H.-J.; Nagatsuma, T.: Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol., 1 (1) (2011), 256263.
[3] Daneshgar, S. et al. : High efficiency w-band power amplifiers using ring-shaped sub-quarter-wavelength power combining technique, in IEEE MTT-S Int. Microwave Symp. Digest, THP-15, Tampa, 2014.
[4] Micovic, M. et al. : 92–96 GHz GaN power amplifiers, in IEEE MTT-S Int. Microwave Symp. Digest, TU1D-1, Montreal, 2012.
[5] Brown, A. et al. : W-band GaN power amplifier MMICs, in IEEE MTT-S Int. Microwave Symp. Digest, WE3G-2, Baltimore, 2011.
[6] Song, P. et al. : A class-E tuned W-band SiGe power amplifier with 40.4% power-added efficiency at 93 GHz. IEEE Microw. Wireless Compon. Lett., 25 (10) (2015), 663665.
[7] Wentzel, A. et al. : A Flexible GaN MMIC enabling digital power amplifiers for the future wireless infrastructure, in IEEE MTT-S Int. Microwave Symp. Digest, TH2B-5, Phoenix, 2015.
[8] Wentzel, A., Hossain, M., Stoppel, D., Weimann, N., Krozer, V., Heinrich, W.: An efficient W-band InP DHBT digital power amplifier, in Proc. 11th Eur. Microwave Integrated Circuits Conf. (EuMiC), London, UK, 2016, 2124.
[9] Weimann, N.G. et al. : SciFab – a wafer-level heterointegrated InP DHBT/SiGe BiCMOS process for mm-wave applications. Phys. Status Solidi A, 213 (4) (2016), 909916.

Keywords

An efficient W-band InP DHBT digital power amplifier

  • Andreas Wentzel (a1), Maruf Hossain (a1), Dimitri Stoppel (a1), Nils Weimann (a1), Viktor Krozer (a1) and Wolfgang Heinrich (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed