Skip to main content Accessibility help
×
Home

A fractal quad-band antenna loaded with L-shaped slot and metamaterial for wireless applications

Published online by Cambridge University Press:  05 March 2018

Tanweer Ali
Affiliation:
School of ECE, REVA University, Bangalore, 560064, India
Mohammad Saadh Aw
Affiliation:
School of ECE, REVA University, Bangalore, 560064, India
Rajashekhar C. Biradar
Affiliation:
School of ECE, REVA University, Bangalore, 560064, India
Corresponding
E-mail address:

Abstract

A novel concept of using fractal antenna with metamaterial and slot to achieve multiband operation is investigated. The antenna consists of an L-shaped slot, Sierpinski triangle (used as fractal) as the radiating part and metamaterial circular split ring resonator (SRR) as the ground plane. The introduction of metamaterial in the ground plane makes the antenna operate at 3.3 GHz (middle WiMAX). The etching of Sierpinski triangle and L-shaped slot in the radiating monopole perturbs the surface current distribution; thereby increasing the total current path length which tends the antenna to further operate at 5.5 (upper WiMAX), 7.3 (satellite TV) and 9.9 GHz (X-band), respectively. The extraction of medium parameter of a circular SRR through waveguide medium is discussed in detail. The antenna has a compact dimension of 0.33λ0 × 0.27λ0 × 0.01λ0 = 30 mm × 24.8 mm × 1.6 mm, at a lower frequency of 3.3 GHz. Under simulation, antenna operates at 3.3, 5.5, 7.3 and 9.9 GHz with S11 < −10 dB bandwidth of about 5.9% (3.24–3.44 GHz), 5.6% (5.31–5.62 GHz), 7.3% (6.99–7.52 GHz) and 3.02% (9.78–10.08 GHz), respectively. In measurement, antenna exhibit resonances at 3.1, 5.52, 7.31, 9.72 GHz with S11 < −10 dB bandwidth of about 3.5% (3.04–3.15 GHz), 5.01% (5.44–5.72 GHz), 13.2% (6.76–7.72 GHz) and 5.77% (9.42–9.98 GHz), respectively. Good impedance matching and stable radiation characteristics are observed across the operational bandwidth of the proposed configuration.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Sarkar, D, Saurav, K and Srivastava, KV (2014) Multi-band microstrip fed slot antenna loaded with split-ring resonator. Electron Letters 50, 14981500.CrossRefGoogle Scholar
[2]Elsheakh, DM, Elsadek, N, Abdallah, HA, Iskander, EAF and El-Hennawy, MF (2010) Reconfigurable single and multiband inset feed microstrip patch antenna for wireless communication devices. Progress in Electromagnetic Research C 12, 191201.CrossRefGoogle Scholar
[3]Bakariya, PS, Dwari, S, Sarkar, M and Mandal, MK (2015) Proximity-coupled microstrip antenna for bluetooth, WiMAX and WLAN applications. IEEE Antennas Wireless Propag Letters 14, 755758.CrossRefGoogle Scholar
[4]Wu, RZ, Wang, P, Zheng, Q and Li, RP (2015) Compact CPW-fed triple-band antenna for diversity applications. Electron Letters 51, 735736.CrossRefGoogle Scholar
[5]Mehdipour, A, Sebak, AR, Trueman, CW and Denidni, TA (2012) Compact multiband planar antenna for 2.4/3.5/5.2/5.8-GHz wireless applications. IEEE Antennas Wireless Propag Letters 11, 144147.CrossRefGoogle Scholar
[6]Wang, H and Zheng, M (2011) An internal triple-band WLAN antenna. IEEE Antennas Wireless Propag Letters 10, 569572.CrossRefGoogle Scholar
[7]Ali, T, Pathan, S and Biradar, RC (2018) A multiband antenna loaded with metamaterial and slots for GPS/WLAN/WiMAX applications. Microwave and Optical Technology Letters 60, 7985.CrossRefGoogle Scholar
[8]Anguera, J, Puente, C, Borja, C and Soler, J (2005) Fractal Shaped Antennas: A Review. Encyclopedia of RF and Microwave Engineering. Wiley Interscience. http://dx.doi.org/10.1002/0471654507.eme128CrossRefGoogle Scholar
[9]Chen, HD, Yang, HW and Sim, CYD (2017) Single open-slot antenna for LTE/WWAN smartphone application. IEEE Transactions on Antennas and Propagation 65(8), 42784282.CrossRefGoogle Scholar
[10]Lee, SH, Lim, Y, Yoon, YJ, Hong, CB and Kim, HI (2010) Multiband folded slot antenna with reduced hand effect for handsets. IEEE Antennas Wireless Propagation Letters 9, 674677.Google Scholar
[11]Yuan, B, Cao, Y and Wang, G (2011) A miniaturized printed slot antenna for six-band operation of mobile handsets. IEEE Antennas Wireless Propagation Letters 10, 854857.CrossRefGoogle Scholar
[12]Sharma, SK, Mulchandani, JD, Gupta, D and Chaudhary, RK (2015) Triple band metamaterial inspired antenna using FDTD technique for WLAN/WiMAX applications. International Journal of RF and Microwave Computer Aided Engineering 25(8), 688695.CrossRefGoogle Scholar
[13]Ali, T and Biradar, RC (2017) A compact multiband antenna using λ/4 rectangular stub loaded with metamaterial for IEEE 802.11 N and IEEE 802.16 E. Microwave and Optical Technology Letters 59(5), 10001006.CrossRefGoogle Scholar
[14]Kukreja, J, Kumar Choudhary, D and Kumar Chaudhary, R (2017) CPW fed miniaturized dual-band short-ended metamaterial antenna using modified split-ring resonator for wireless application. International Journal of RF and Microwave Computer-Aided Engineering 27(8), 17.CrossRefGoogle Scholar
[15]Wen, R (2013) Compact planar triple-band monopole antennas based on a single-loop resonator. Electronics Letters 49(15), 916918.CrossRefGoogle Scholar
[16]Liu, P, Zou, Y, Xie, B, Liu, X and Sun, B (2012) Compact CPW-fed tri-band printed antenna with meandering split-ring slot for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters 11, 12421244.Google Scholar
[17]Teng, XY, Zhang, XM, Li, Y, Yang, ZX, Liu, DC and Dai, QF (2012) A compact triple-band printed monopole antenna for WLAN/WiMAX applications. In 2012 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE), Vol. 82. IEEE, pp. 140143.CrossRefGoogle Scholar
[18]Li, L, Zhang, X, Yin, X and Zhou, L (2016) A compact triple-band printed monopole antenna for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters 15, 18531855.CrossRefGoogle Scholar
[19]Rajabloo, H, Kooshki, VA and Oraizi, H (2017) Compact microstrip fractal Koch slot antenna with ELC coupling load for triple band application. AEU – International Journal of Electronics and Communications 73, 144149.CrossRefGoogle Scholar
[20]Vinodha, E and Raghavan, S (2017) Double stub microstrip fed two element Rectangular Dielectric Resonator Antenna for multiband operation. AEU-International Journal of Electronics and Communications 78, 4653.CrossRefGoogle Scholar
[21]Ali, T and Biradar, RC (2017) A compact hexagonal slot dual band frequency reconfigurable antenna for WLAN applications. Microwave and Optical Technology Letters 59(4), 958964.CrossRefGoogle Scholar
[22]Balanis, CA (2005) Antenna theory: analysis and design. Hoboken, NJ: Wiley Interscience.Google Scholar
[23]Ali, T, Mohammad Saadh, AW, Biradar, RC, Anguera, J and Andujar, A (2017) A miniaturized metamaterial slot antenna for wireless applications. AEU-International Journal of Electronics and Communications 82, 368382.CrossRefGoogle Scholar
[24]Saha, C and Siddiqui, JY (2011) Versatile CAD formulation for estimation of the resonant frequency and magnetic polarizability of circular split ring resonators. International Journal of RF and Microwave Computer-Aided Engineering 21(4), 432438.CrossRefGoogle Scholar
[25]Smith, DR, Schultz, S, Markoš, P and Soukoulis, CM (2002) Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Physical Review B 65(19), 195104 (15).CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 20
Total number of PDF views: 58 *
View data table for this chart

* Views captured on Cambridge Core between 05th March 2018 - 18th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-xbf5p Total loading time: 0.524 Render date: 2021-01-18T08:44:31.483Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Mon Jan 18 2021 07:54:32 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A fractal quad-band antenna loaded with L-shaped slot and metamaterial for wireless applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A fractal quad-band antenna loaded with L-shaped slot and metamaterial for wireless applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A fractal quad-band antenna loaded with L-shaped slot and metamaterial for wireless applications
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *