Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T11:40:13.324Z Has data issue: false hasContentIssue false

15 GHz quadrature voltage controlled oscillator in 130 nm CMOS technology

Published online by Cambridge University Press:  11 October 2011

Paolo Lucchi
Affiliation:
DII, University of Modena and Reggio Emilia, Modena, Italy. Phone: +39 059 205 61 68. IMS Laboratory, University of Bordeaux 1, Talence, France.
Davide Dermit
Affiliation:
DII, University of Modena and Reggio Emilia, Modena, Italy. Phone: +39 059 205 61 68.
Gilles Jacquemod
Affiliation:
University of Nice-Sophia Antipolis, LEAT Laboratory, Valbonne, France.
Jean Baptiste Begueret
Affiliation:
IMS Laboratory, University of Bordeaux 1, Talence, France.
Mattia Borgarino*
Affiliation:
DII, University of Modena and Reggio Emilia, Modena, Italy. Phone: +39 059 205 61 68.
*
Corresponding author: M. Borgarino Email: mattia.borgarino@unimore.it

Abstract

This paper reports a 15 GHz quadrature voltage controlled oscillator (QVCO) designed in a 130 nm CMOS technology. The phase noise performance of the QVCO and of a phase locked loop (PLL) where the QVCO was inserted were compared with the literature and with telecom standards and commercial products for broadcast satellite applications.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Deng, Z.; Chen, J.; Tsai, J.; Niknejad, A.M.: A CMOS Ku-band single-conversion low-noise block front-end for satellite receivers, in IEEE Radio Frequency Integrated Circuit Symp., Boston, MA, USA, 2009.Google Scholar
[2]Myiashita, K.: A plastic packaged Ku-band LNB with very high susceptibility to supply PLL in 0.18 um CMOS, in IEEE Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 2010 Topical Meeting on, New Orleans, LA, USA, 2010.CrossRefGoogle Scholar
[3]Ghirlando, G.; Smerzi, S.A.; Copani, T.; Palmisano, G.: A monolithic 12 GHz heterodyne receiver for DVB-S applications in silicon bipolar technology. IEEE Trans. Microw. Theory Tech., 53 (2005), 952959.CrossRefGoogle Scholar
[4]Integrated mixer oscillator PLL for satellite LNB, TFF1004HN/N1 Datasheet, Rev. 01, 2008.Google Scholar
[5]Levantino, S.; Samori, C.; Bonfanti, A.; Gierkink, S.L.J.; Lacaita, A.L.; Boccuzzi, V.: Frequency dependence on bias current in 5-GHz CMOS VCOs: impact on tuning range and flicker noise upconversion. IEEE J. Solid-State Circuits, 37 (2002), 10031011.CrossRefGoogle Scholar
[6]Hajimiri, A.; Lee, T.H.: Design issues in CMOS differential LC oscillators. IEEE J. Solid-State Circuits, 34 (1999), 717724.Google Scholar
[7]Berny, A.D.; Niknejad, A.M.; Mayer, R.G.: A 1.8 GHz LC VCO with 1.3 GHz tuning range and digital amplitude calibration. IEEE J. Solid-State Circuits, 40 (2005), 909917.CrossRefGoogle Scholar
[8]Scuderi, A.; Biondi, T.; Ragonese, E.; Palmisano, G.: A lumped scalable model for silicon integrated spiral inductors. IEEE Trans. Circuits Syst. I Regul. Pap., 51 (2004), 12031209.CrossRefGoogle Scholar
[9]Dal Toso, S.; Bevilacqua, A.; Tiebout, M.; Da Dalt, N.; Gerosa, A.; Neviani, A.: A 0.06 mm2 11 mW local oscillator for the GSM standard in 65 nm CMOS. IEEE J. Solid-State Circuits, 45 (2010), 12951304.CrossRefGoogle Scholar
[10]Tiebout, M.: Low-power low-phase-noise differentially tuned quadrature VCO design in standard CMOS. IEEE J. Solid-State Circuits, 36 (2001), 10181024.CrossRefGoogle Scholar
[11]A companion guide to DVB-S2, Tandberg Television (UK), 2004.Google Scholar
[12]Fahs, B.; Ali-Ahmad, W.Y.; Gamand, P.: A Two-stage ring oscillator in 0.13 um CMOS for UWB impulse radio. IEEE Trans. Microw. Theory Tech., 57 (2009), 10741082.CrossRefGoogle Scholar
[13]Jeong, C.-Y.; Yoo, C.: 5-GHz low-phase noise CMOS quadrature VCO. IEEE Microw. Wirel. Compon. Lett., 11 (2006), 609611.CrossRefGoogle Scholar
[14]Hossain, M.; Carusone, A.C.: 20 GHz low power QVCO and De-skew techniques in 0.13 µm digital CMOS, in IEEE Custom Integrated Circuits Conf., San Jose, CA USA, 2008.CrossRefGoogle Scholar
[15]Tormanen, M.; Sjoland, H.: A 26-GHz LC-QVCO in 0.13 µm CMOS, in IEEE Asia-Pacific Microwave Conf., Bangkok, Thailand, 2007.Google Scholar
[16]Hossain, M., Carusone, A.C.: CMOS oscillators for clock distribution and injection-locked deskew. IEEE J. Solid-State Circuits, 44 (2009), 21382153.CrossRefGoogle Scholar
[17]Zafar, S.; Awan, M.; Zulkii, T.Z.A.: 5-GHz low-phase noise quadrature VCO in 0.13 µm RF CMOS process technology, in IEEE Wireless and Microwave Technology Conf., Sand Key Beach, Clearwater, FL, USA, 2009.CrossRefGoogle Scholar
[18]Han, Y.; Larson, L.E.; Lie, D.Y.C.: A low-voltage 12 GHz VCO in 0.13-μm CMOS for OFDM applications, in IEEE Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Diego, CA, USA, 2006.Google Scholar
[19]Fu, C.T.; Luong, H.C.: A 0.8-V CMOS quadrature LC VCO using capacitive coupling, in IEEE Asian Solid-State Circuits Conf., Jeju South Korea, 2007.Google Scholar
[20]Jacobsson, H.; Bao, M.; Aspemyr, L.; Mercha, A.; Carchon, G.: Low phase noise sub-1 V Supply 12 and 18 GHz VCOs in 90 nm CMOS, in IEEE Int. Microwave Symp. Digest, San Francisco, CA, USA, 2006.CrossRefGoogle Scholar
[21]Lu, J.; Wang, N.Y.; Chang, M.C.F.: 14.6–22.2 GHz LC-VCO in 65 nm CMOS technology for wideband applications. Electron. Lett., 47 (2011), 385386.CrossRefGoogle Scholar