Skip to main content Accessibility help

Surface flux patterns on planets in circumbinary systems and potential for photosynthesis

  • Duncan H. Forgan (a1) (a2), Alexander Mead (a1), Charles S. Cockell (a2) and John A. Raven (a3)


Recently, the Kepler Space Telescope has detected several planets in orbit around a close binary star system. These so-called circumbinary planets will experience non-trivial spatial and temporal distributions of radiative flux on their surfaces, with features not seen in their single-star orbiting counterparts. Earth-like circumbinary planets inhabited by photosynthetic organisms will be forced to adapt to these unusual flux patterns. We map the flux received by putative Earth-like planets (as a function of surface latitude/longitude and time) orbiting the binary star systems Kepler-16 and Kepler-47, two star systems which already boast circumbinary exoplanet detections. The longitudinal and latitudinal distribution of flux is sensitive to the centre-of-mass motion of the binary, and the relative orbital phases of the binary and planet. Total eclipses of the secondary by the primary, as well as partial eclipses of the primary by the secondary add an extra forcing term to the system. We also find that the patterns of darkness on the surface are equally unique. Beyond the planet's polar circles, the surface spends a significantly longer time in darkness than latitudes around the equator, due to the stars’ motions delaying the first sunrise of spring (or hastening the last sunset of autumn). In the case of Kepler-47, we also find a weak longitudinal dependence for darkness, but this effect tends to average out if considered over many orbits. In the light of these flux and darkness patterns, we consider and discuss the prospects and challenges for photosynthetic organisms, using terrestrial analogues as a guide.


Corresponding author


Hide All
Brandt, T.D. & Spiegel, D.S. (2014). eprint arXiv:1404.5337.
Brown, S.P., Mead, A.J., Forgan, D.H., Raven, J.A. & Cockell, C.S. (2014). Int. J. Astrobiol 13, 279289.
Correia, A.C.M. & Laskar, J. (2004). Nature 429, 848.
Cuntz, M. (2014). Astrophys. J. 780, 14.
Dobrovolskis, A.R. (2007). Icarus 192, 1.
Dobrovolskis, A.R. (2009). Icarus 204, 1.
Dobrovolskis, A.R. (2013). Icarus 226, 760.
Doyle, L.R. et al. (2011). Science (NY) 333, 1602.
Dressing, C.D. & Charbonneau, D. (2013). Astrophys. J. 767, 95.
Endres, K.-P. & Schad, W. (2002). Moon Rhythms in Nature: How Lunar Cycles Affect Living Organisms. Floris Books, Edinburgh.
Forgan, D. (2014). Mon. Not. R. Astron. Soc. 437, 1352.
Forgan, D. & Kipping, D. (2013). Mon. Not. R. Astron. Soc. 432, 2994.
Forgan, D. & Yotov, V. (2014). Mon. Not. R. Astron. Soc. 441, 3513.
Haghighipour, N. & Kaltenegger, L. (2013). Astrophys. J. 777, 166.
Hart, M.H. (1979). Icarus 37, 351.
Heller, R. & Zuluaga, J.I. (2013). Astrophys. J. 776, L33.
Henrard, J. & Murigande, C. (1987). Celest. Mech. 40, 345.
Hinkel, N.R. & Kane, S.R. (2013). Astrophys. J. 774, 27.
Holman, M.J. & Wiegert, P.A. (1999). Astron. J. 117, 621.
Huang, S.-S. (1959). Publ. Astron. Soc. Pacific 71, 421.
Kaltenegger, L. & Sasselov, D. (2011). Astrophys. J. 736, L25.
Kane, S.R. & Gelino, D.M. (2012). Astrobiology 12, 940.
Kane, S.R. & Hinkel, N.R. (2013). Astrophys. J. 762, 7.
Kane, S.R., Ciardi, D.R., Gelino, D.M. & von Braun, K. (2012). Mon. Not. R. Astron. Soc. 425, 757.
Kasting, J., Whitmire, D. & Reynolds, R. (1993). Icarus 101, 108.
Kasting, J.F., Kopparapu, R., Ramirez, R.R. & Harman, C. (2013). Proc. Natl. Acad. Sci. U. S. A. 111, 1264112646.
Kipping, D.M., Forgan, D., Hartman, J., Nesvorný, D., Bakos, G.A., Schmitt, A. & Buchhave, L. (2013). Astrophys. J. 777, 134.
Kopparapu, R.K. et al. (2013). Astrophys. J. 765, 131.
Kopparapu, R.K., Ramirez, R.M., SchottelKotte, J., Kasting, J.F., Domagal-Goldman, S. & Eymet, V. (2014). eprint arXiv:1404.5292
Leung, G.C.K. & Lee, M.H. (2013). Astrophys. J. 763, 107.
Liu, H.-G., Zhang, H. & Zhou, J.-L. (2013). Astrophys. J. 767, L38.
Livengood, T.A. et al. (2011). Astrobiology 11, 907.
Mason, P.A., Zuluaga, J.I., Clark, J.M. & Cuartas-Restrepo, P.A. (2013). Astrophys. J. 774, L26.
Mayor, M. & Queloz, D. (1995). Nature 378, 355.
O'Malley-James, J.T., Raven, J.A., Cockell, C.S. & Greaves, J.S. (2012). Astrobiology 12, 115.
Orosz, J.A. et al. (2012). Science (NY) 337, 1511.
Peale, S.J. (1969). Astron. J. 74, 483.
Petigura, E.A., Howard, A.W. & Marcy, G.W. (2013). Proc. Natl. Acad. Sci. U. S. A. 110, 19273.
Quarles, B., Musielak, Z.E. & Cuntz, M. (2012). Astrophys. J. 750, 14.
Raven, J. (2007). Nature 448, 418.
Raven, J.A. & Cockell, C.S. (2006). Astrobiology 6, 668.
Rein, , Fujii, & Spiegel, (2014). eprint arXiv:1404.6531.
Seager, S., Bains, W. & Hu, R. (2013a). Astrophys. J. 775, 104.
Seager, S., Bains, W. & Hu, R. (2013b). Astrophys. J. 777, 95.
Selsis, F., Kasting, J.F., Levrard, B., Paillet, J., Ribas, I. & Delfosse, X. (2007). Astron. Astrophys. 476, 1373.
Shields, A.L., Bitz, C.M., Meadows, V.S., Joshi, M.M. & Robinson, T.D. (2014). Astrophys. J. 785, L9.
Sota, T., Yamamoto, S., Cooley, J.R., Hill, K.B.R., Simon, C. & Yoshimura, J. (2013). Proc. Natl. Acad. Sci. U. S. A. 110, 6919.
Stomp, M., Huisman, J., Stal, L.J. & Matthijs, H.C.P. (2007). ISME J. 1, 271.
Underwood, D., Jones, B. & Sleep, P. (2003). Int. J. Astrobiol. 2, 289.
Welsh, W.F. et al. (2012). Nature 481, 475.
Williams, D.M. & Pollard, D. (2002). Int. J. Astrobiol. 1, 61.
Wolstencroft, R. & Raven, J.A. (2002). Icarus 157, 535.
Yang, J., Boué, G., Fabrycky, D.C. & Abbot, D.S. (2014). Astrophys. J. 787, L2.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed