Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-20T00:04:47.288Z Has data issue: false hasContentIssue false

Slow ion irradiation of sugar: astrobiological implications

Published online by Cambridge University Press:  01 September 2009

M. Tuleta*
Affiliation:
Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Cracow, Poland
L. Gabla
Affiliation:
Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Cracow, Poland
N.C. Wickramasinghe
Affiliation:
Cardiff Centre for Astrobiology, Cardiff University, 2 North Road, Cardiff CF10 3DY, UK

Abstract

As a result of irradiation by slow hydrogen and argon ions of saccharose, humic films having a fractal nature were produced. The use of hydrogen ions simulated roughly the interaction of low-energy solar wind protons with interplanetary dust grains which, in addition to organic and mineral dust, may include clumps of viable bacteria. The type of film generated by this experimental procedure could play a role in shielding the interior of micron-sized clumps from damaging ultraviolet and low-energy cosmic ray irradiation. We argue that such films may have played a role in processes that led to the initial origin of life, and following the emergence of life the same types of films (as, for instance, in biofilms surrounding cells) may have been modified by irradiation to offer protection to viable cells in the interior.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, Y. & Schnitzer, M. (1976). Soil Sci. Soc. Am. J. 40, 682686.CrossRefGoogle Scholar
Cooper, G., Kimmich, N., Belisle, W., Sarinana, J., Brabham, K. & Garrel, L. (2001). Nature 414, 879883.CrossRefGoogle Scholar
Crovisier, J., Bockelee-Morvan, D., Biver, N., Colom, P., Despois, D. & Lis, D.C. (2004). Astron. Astrophys. 418, L35L38.CrossRefGoogle Scholar
Ehrenfreund, P. et al. (2002). Rep. Prog. Phys. 65, 14271487.CrossRefGoogle Scholar
Ehrenfreund, P. et al. (Eds.) (2004). Astrobiology: Future Perspectives. Kluwer Academic Publishers, Dordrecht.Google Scholar
Hayatsu, R., Winans, R.E., Scott, R.G., McBeth, R.L., Moore, L.P. & Studier, M.H. (1980). Science 207, 12021204.CrossRefGoogle Scholar
Hollis, J.M., Lovas, F.J. & Jewell, P.R. (2000). Astrophys. J. 540, L107L110.CrossRefGoogle Scholar
Hollis, J.M., Lovas, F.J., Jewell, P.R. & Coudert, L.H. (2002). Astrophys. J. 571, L59L62.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1976). Nature 264, 4546.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1977a). Nature 268, 610612.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1977b). Mon. Not. Roy. Astron. Soc. 181, 51P55P.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (2000). Astronomical Origins of Life: Steps towards Panspermia. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
Hudson, R.L., Moore, M.H. & Cook, A.M. (2005). Adv. Space Res. 36, 184189.CrossRefGoogle Scholar
Peitgen, H.-O., Jürgens, H. & Saupe, D. (1992). Fractals for the Classroom. Part 1: Introduction to Fractals and Chaos. Springer-Verlag, New York.Google Scholar
Thiele, H. & Kettner, H. (1953). Kolloid Z. 130, 131160.CrossRefGoogle Scholar
Tuleta, M., Gabla, L. & Madej, J. (2001). Phys. Rev. Lett. 87, 078103-1–078103-4.CrossRefGoogle Scholar
Tuleta, M., Gabla, L. & Szkarlat, A. (2005). Europhys. Lett. 70, 123128.CrossRefGoogle Scholar