Skip to main content Accessibility help

Paleometry as a key tool to deal with paleobiological and astrobiological issues: some contributions and reflections on the Brazilian fossil record

  • Amanda L. S. Gomes (a1), Bruno Becker-Kerber (a2), Gabriel L. Osés (a2), Gustavo Prado (a3), Pedro Becker Kerber (a4), Gabriel E. B. de Barros (a5), Douglas Galante (a6), Elidiane Rangel (a7), Pidassa Bidola (a8), Julia Herzen (a8), Franz Pfeiffer (a8), Márcia A. Rizzutto (a9) and Mírian L. A. F. Pacheco (a5)...


Investigations into the existence of life in other parts of the cosmos find strong parallels with studies of the origin and evolution of life on our own planet. In this way, astrobiology and paleobiology are married by their common interest in disentangling the interconnections between life and the surrounding environment. In this way, a cross-point of both sciences is paleometry, which involves a myriad of imaging and geochemical techniques, usually non-destructive, applied to the investigation of the fossil record. In the last decades, paleometry has benefited from an unprecedented technological improvement, thus solving old questions and raising new ones. This advance has been paralleled by conceptual approaches and discoveries fuelled by technological evolution in astrobiological research. In this context, we present some new data and review recent advances on the employment of paleometry to investigations on paleobiology and astrobiology in Brazil in areas such biosignatures in Ediacaran microbial mats, biogenicity tests on enigmatic Ediacaran structures, research on Ediacaran metazoan biomineralization, fossil preservation in Cretaceous insects and fish, and finally the experimental study on the decay of fish to test the effect of distinct types of sediment on soft-tissue preservation, as well as the effects of early diagenesis on fish bone preservation.


Corresponding author

Author for correspondence: Mírian L. A. F. Pacheco, E-mail:


Hide All
Adrian, L, Manz, W, Szewzyk, U and Görisch, H (1998) Physiological characterization of a bacterial consortium reductively dechlorinating 1, 2, 3-and 1, 2, 4-trichlorobenzene. Applied and Environmental Microbiology 64, 496503.
Babcock, LE, Grunow, AM, Sadowski, GR and Leslie, SA (2005) Corumbella, an Ediacaran-grade organism from the Late Neoproterozoic of Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 220, 718.
Basei, MAS, Drukas, CO, Nutman, AP, Wemmer, K, Dunyi, L, Santos, PRD, Passarelli, CR, CamposNeto, MC Neto, MC, Siga, OJ, and Osako, L (2011) The Itajaí foreland basin: a tectono-sedimentary record of the Ediacaran period, Southern Brazil. International Journal of Earth Sciences 100, 543569.
Beasley, MM, Bartelink, EJ, Taylor, L and Miller, RM (2014) Comparison of transmission FTIR, ATR, and DRIFT spectra: implications for assessment of bone bioapatite diagenesis. Journal of Archaeological Science 46, 1622.
Becker-Kerber, B, Osés, GL, Curado, JF, Rizzutto, MDA, Rudnitzki, ID, Romero, GR, Onary-Alves, SY, Benini, VG, Galante, D, Rodrigues, F, Buck, PV, Rangel, EC, Ghilardi, RP and Pacheco, MLAF (2017 a) Geobiological and diagenetic insights from Malvinokaffric devonian biota (Chapada Group, Paraná Basin, Brazil): paleobiological and paleoenvironmental implications. Palaios 32, 238249.
Becker-Kerber, B, Pacheco, MLAF, Rudnitzki, ID, Galante, D, Rodrigues, F and de Moraes Leme, J (2017 b) Ecological interactions in Cloudina from the Ediacaran of Brazil: implications for the rise of animal biomineralization. Scientific Reports 7, 5482.
Bedard, DL, Bailey, JJ, Reiss, BL and Jerzak, GVS (2006) Development and characterization of stable sediment-free anaerobic bacterial enrichment cultures that dechlorinate Aroclor 1260. Applied and Environmental Microbiology 72, 24602470.
Benner, SA (2010) Defining life. Astrobiology 10, 10211030.
Bidola, P, Stockmar, M, Achterhold, K, Pfeiffer, F, Pacheco, MLAF, Soriano, C, Beckmann, F and Herzen, J (2015 a) Absorption and phase contrast X-Ray imaging in paleontology using laboratory and synchrotron sources. Microscopy and Microanalysis 21, 12881295.
Bidola, PM, Zanette, I, Achterhold, K, Holzner, C and Pfeiffer, F (2015 b) Optimization of propagation-based phase-contrast imaging at a laboratory setup. Optics Express 23, 3000030013.
Bissaro-Júnior, MC, Ghilardi, RP, Bueno, MR, Manzoli, A, Adorni, FS, Muniz, FP, Guilherme, E, Filho, JPS, Negri, FR and Hsiou, AS (2018) The total station as a tool for recording provenance in paleontology fieldwork: configuration, use, advantages, and disadvantages. Palaios 33, 5560.
Bower, DM, Hummer, DR, Steele, A and Kyono, A (2015) The Co-evolution of Fe-oxides, Ti-oxides, and other microbially induced mineral precipitates in sandy sediments: understanding the role of cyanobacteria In weathering and early diagenesis. Journal of Sedimentary Research 85, 12131227.
Brasier, MD and Wacey, D (2012) Fossils and astrobiology: new protocols for cell evolution in deep time. International Journal of Astrobiology 11, 217228.
Brasier, MD, Green, OR, Jephcoat, AP, Kleppe, AK, Van Kranendonk, MJ, Lindsay, JF, Steele, A and Grassineau, NV (2002) Questioning the evidence for Earth's oldest fossils. Nature 416, 76.
Brasier, MD, Antcliffe, J, Saunders, M and Wacey, D (2015) Changing the picture of Earth's earliest fossils (3.5–1.9 Ga) with new approaches and new discoveries. Proceedings of the National Academy of Sciences 112, 48594864.
Briggs, DE and McMahon, S (2016) The role of experiments in investigating the taphonomy of exceptional preservation. Palaeontology 59, 111.
Buick, R (1990) Microfossil recognition in Archean rocks: an appraisal of spheroids and filaments from a 3500 my old chert-barite unit at North Pole, Western Australia. Palaios 5, 441459.
Cai, Y, Xiao, S, Hua, H and Yuan, X (2015) New material of the biomineralizing tubular fossil Sinotubulites from the late Ediacaran Dengying Formation, South China. Precambrian Research 261, 1224.
Canfield, DE and Raiswell, R (1991) Pyrite formation and fossil preservation. In Allison PA and Briggs DEG (eds), Taphonomy: Releasing the Data Locked in the Fossil Record, Topics in Geobiology, vol. 9, Plenum Press, pp. 337387.
Cappellen, P (2003) Biomineralization and global biogeochemical cycles. Reviews in Mineralogy and Geochemistry 54, 357381.
Chen, Z, Bengtson, S, Zhou, CM, Hua, H and Yue, Z (2008) Tube structure and original composition of Sinotubulites: shelly fossils from the late Neoproterozoic in southern Shaanxi, China. Lethaia 41, 3745.
Chen, JY, Bottjer, DJ, Davidson, EH, Li, G, Gao, F, Cameron, RA, Hadfield, MG, Xian, D, Tafforeau, P, Jia, Q, Sugiyama, H and Tang, R (2009) Phase contrast synchrotron X-ray microtomography of Ediacaran (Doushantuo) metazoan microfossils: Phylogenetic diversity and evolutionary implications. Precambrian Research 173, 191200.
Cloud, P (1973) Paleoecological significance of the banded iron-formation. Economic Geology 68, 11351143.
Conrad, PG and Nealson, KH (2001) A non-Earthcentric approach to life detection. Astrobiology 1, 1524.
Glaessner, MF (1980) Pseudofossils from the Precambrian, including ‘Buschmannia'and ‘Praesolenopora’. Geological Magazine 117, 199200.
Delgado, ADO, Buck, PV, Osés, GL, Ghilardi, RP, Rangel, EC and Pacheco, MLAF (2014) Paleometry: a brand new area in Brazilian science. Materials Research 17, 14341441.
Dodd, MS, Papineau, D, Grenne, T, Slack, JF, Rittner, M, Pirajno, F, O'Neil, J and Little, CT (2017) Evidence for early life in Earth's oldest hydrothermal vent precipitates. Nature 543, 60.
Dupraz, C, Reid, RP, Braissant, O, Decho, AW, Norman, RS and Visscher, PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews 96, 141162.
Fairchild, TR, Sanchez, EA, Pacheco, MLA and de Moraes Leme, J (2012) Evolution of Precambrian life in the Brazilian geological record. International Journal of Astrobiology 11, 309323.
Freire, PTC, Abagaro, BTO, Sousa Filho, FE, Silva, JH, Saraiva, AAF, Brito, DDS and Viana, BC (2013) Pyritization of fossils from the Lagerstätte Araripe Basin, Northeast Brazil, from the Cretaceous period. Pyrite: synthesis, characterization and uses. New York: Nova Science Publishers Inc, pp. 123140.
Germs, GJ (1972) New shelly fossils from Nama Group, south west Africa. American Journal of Science 272, 752761.
Glamoclija, M, Steele, A, Fries, M, Schieber, J, Voytek, MA and Cockell, CS (2009) Association of anatase and microbes: unusual fossilization effect or a potential biosignature? Geological Society of America Special Papers 458, 965975.
Golden, DC, Ming, DW, Morris, RV, Brearley, AJ, Jr.Lauer, HV, Treiman, AH, Zolensky, ME, Schwandt, CS, Lofgren, GE and Mckay, GA (2015) Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001. American Mineralogist 89, 681695.
Grant, SW (1990) Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science 290, 261294.
Grotzinger, JP (2014) Habitability, taphonomy, and the search for organic carbon on Mars. Science 343, 386387.
Grotzinger, JP, Watters, WA and Knoll, AH (2000) Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology 26, 334359.
Guadagnin, F, Chemale, F, Dussin, IA, Jelinek, AR, dos Santos, MN, Borba, ML, Justino, D, Bertottia, AL, and Alessandretti, L (2010) Depositional age and provenance of the Itajaí Basin, Santa Catarina State, Brazil: implications for SW Gondwana correlation. Precambrian Research 180, 180182.
Hofmann, HJ and Mountjoy, EW (2001) Namacalathus-Cloudina assemblage in Neoproterozoic Miette Group (Byng Formation), British Columbia: Canada's oldest shelly fossils. Geology 29, 10911094.
Hua, H, Chen, Z, Yuan, X, Zhang, L and Xiao, S (2005) Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology 33, 277280.
Hua, H, Pratt, BR, and Zhang, LY (2003) Borings in Cloudina shells: complex predator-prey dynamics in the terminal Neoproterozoic. Palaios 18, 454459.
Javaux, EJ and Dehant, V (2010) Habitability: from stars to cells. The Astronomy and Astrophysics Review 18, 383416.
Judson, OP (2017) The energy expansions of evolution. Nature Ecology & Evolution, 1(6), 0138.
Kim, J, Dong, H, Seabaugh, J, Newell, SW and Eberl, DD (2004) Role of microbes in the smectite-to-illite reaction. Science 303, 830832.
Knoll, AH (2003) Biomineralization and evolutionary history. Reviews in Mineralogy and Geochemistry 54, 329356.
Knoll, AH (2013) Systems paleobiology. GSA Bulletin 125, 313.
Levin, GV and Straat, PA (1976) Viking labeled release biology experiment: interim results. Science 194, 13221329.
Lima, RJC, Saraiva, AAF, Lanfredi, S, Nobre, MADL, Freire, PDTC and Sasaki, JM (2007) Spectroscopic characterization of a fish of the cretaceous period (Araripe Basin). Química Nova 30, 2224.
Lowenstam, HA and Weiner, S (1989) On Biomineralization. New York, Oxford University Press.
MacLean, LCW, Tyliszczak, T, Gilbert, PUPA, Zhou, D, Pray, TJ, Onstott, TC and Southam, G (2008) A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm. Geobiology 6, 471480.
Maldanis, L, Carvalho, M, Almeida, MR, Freitas, FI, de Andrade, JAFG, Nunes, RS, Rochitte, CE, Poppi, RJ, Freitas, RO, Rodrigues, F, Siljeström, S, Lima, FA, Galante, D, Carvalho, IS, Perez, CA, de Carvalho, MR, Bettini, J, Fernandez, V and Xavier-Neto, J (2016) Heart fossilization is possible and informs the evolution of cardiac outflow tract in vertebrates. Elife 5, e14698.
Mandair, GS and Morris, MD (2015) Contributions of Raman spectroscopy to the understanding of bone strength. BoneKEy Reports 4, 18.
Martill, DM, Bechly, G and Loveridge, RF (2007) The Crato Fossil Beds of Brazil: Window Into an Ancient World. Cambridge: New York, Cambridge University Press.
McIlroy, D, Crimes, TP and Pauley, JC (2005) Fossils and matgrounds from the Neoproterozoic Longmyndian Supergroup, Shropshire, UK. Geological Magazine 142, 441455.
McKay, DS, Gibson, EK, Thomas-Keprta, KL, Vali, H, Romanek, CS, Clemett, SJ, Chillier, XDF, Maechling, CR and Zare, RN (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273, 924930.
Menon, LR, McIlroy, D, Liu, AG and Brasier, MD (2016) The dynamic influence of microbial mats on sediments: fluid escape and pseudofossil formation in the Ediacaran Longmyndian Supergroup, UK. Journal of the Geological Society 173, 177185.
Morris, MD and Mandair, GS (2011) Raman assessment of bone quality. Clinical Orthopaedics and Related Research® 469, 21602169.
Naimark, E, Kalinina, M, Shokurov, A, Boeva, N, Markov, A and Zaytseva, L (2016) Decaying in different clays: implications for soft-tissue preservation. Palaeontology 59, 583595.
Neumann, VHML (1999) Estratigrafia, Sedimentologia, Geoquimica y Diagenesis de los Sistemas Lacustres Aptiense-Albienses de la Cuenca de Araripe (Noreste De Brasil) (Tesis de Doctorado). Universitat de Barcelona, Barcelona, 1999.
Nielsen-Marsh, CM and Hedges, RE (2000) Patterns of diagenesis in bone I: the effects of site environments. Journal of Archaeological Science 27, 11391150.
Noffke, N (2010) Geobiology: Microbial Mats in Sandy Deposits From the Archean Era to Today. Springer-Verlag, Berlin. Springer Science & Business Media.
Noffke, N (2015) Ancient sedimentary structures in the <3.7 Ga gillespie lake member, mars, that resemble macroscopic morphology, spatial associations, and temporal succession in terrestrial microbialites. Astrobiology 15, 169192.
Orosei, R, Lauro, SE, Pettinelli, E, Cicchetti, A, Coradini, M, Cosciotti, B, Di Paolo, F, Flamini, E, Mattei, E, Pajola, M, Soldovieri, F, Cartacci, M, Cassenti, F, Frigeri, A, Giuppi, S, Martufi, R, Masdea, A, Mitri, G, Nenna, C, Noschese, R, Restano, M and Seu, R (2018) Radar evidence of subglacial liquid water on Mars. Science 361, eaar7268.
Osés, GL, Petri, S, Becker-Kerber, B, Romero, GR, de Almeida Rizzutto, M, Rodrigues, F, Galante, D, Silva, TF, Curado, JF, Rangel, EC, Ribeiro, RP and Pacheco, MLAF (2016) Deciphering the preservation of fossil insects: a case study from the Crato Member, Early Cretaceous of Brazil. PeerJ 4, e2756.
Osés, GL, Petri, S, Voltani, CG, Prado, GM, Galante, D, Rizzutto, MA, Rudnitzki, ID, Silva, EP, Rodrigues, F, Rangel, EC, Sucerquia, PA and Pacheco, MLAF (2017) Deciphering pyritization-kerogenization gradient for fish soft-tissue preservation. Scientific Reports 7, 1468.
Pacheco, MLF, Galante, D, Rodrigues, F, Leme, JDM, Bidola, P, Hagadorn, W, Stockmar, M, Herzen, J, Rudnitzki, ID, Pfeiffer, F and Marques, AC (2015) Insights into the skeletonization, lifestyle, and affinity of the unusual Ediacaran fossil Corumbella. PLoS ONE 10, e0114219.
Pacheco, MLF, Becker-Kerber, B and Barroso, FRG (2016) Quando os animais herdaram o planeta. In Galante, D, Silva, EP, Rodrigues, F, Horvath, J and Avellar, MG (eds), Astrobiologia, uma ciência emergente. São Paulo: Tikinet Edição, IAG/USP. pp. 197216.
Paim, PSG and Fonseca, MMD (2004) Bacias do Camaquã e Itajaí. In: Mantesso-Neto, V, Bartorelli, A, Carneiro, CDR, Brito-Neves, BB (eds), Geologia do Continente Sul-Americano: Evolução da Obra de Fernando Flávio Marques de Almeida. São Paulo: Editora Beca, pp. 490500.
Parry, LA, Boggiani, PC, Condon, DJ, Garwood, RJ, Leme, JDM, McIlroy, D, Brasier, MD, Trindade, R, Campanha, GAC, Pacheco, MLAF, Diniz, CQC and Liu, AG (2017) Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil. Nature Ecology & Evolution 1, 1455.
Penny, AM, Wood, R, Curtis, A, Bowyer, F, Tostevin, R and Hoffman, KH (2014) Ediacaran metazoan reefs from the Nama Group, Namibia. Science 344, 15041506.
Porter, SM (2010) Calcite and aragonite seas and the de novo acquisition of carbonate skeletons. Geobiology 8, 256277.
Pruss, SB, Blättler, CL, Macdonald, FA and Higgins, JA (2018) Calcium isotope evidence that the earliest metazoan biomineralizers formed aragonite shells. Geology 46, 763766.
Purnell, MA, Donoghue, PJ, Gabbott, SE, McNamara, ME, Murdock, DJ and Sansom, RS (2018) Experimental analysis of soft-tissue fossilization: opening the black box. Palaeontology 61, 317323.
Raiswell, R, Bottrell, SH, Al-Biatty, HJ and Tan, MM (1993) The influence of bottom water oxygenation and reactive iron content on sulfur incorporation into bitumens from Jurassic marine shales. American Journal of Science 293, 569596.
Riquelme, F, Ruvalcaba-Sil, JL and Alvarado-Ortega, J (2009) Palaeometry: non-destructive analysis of fossil materials. Boletín de la Sociedad Geológica Mexicana 61, 177183.
Rostirolla, SP (1991) Tectônica e sedimentação da Bacia do Itajaí-SC (Mastership dissertation). Universidade Federal de Ouro Preto, Ouro Preto, 131.
Rostirolla, SP, Ahrendt, A, Soares, PC and Carmignani, L (1999) Basin analysis and mineral endowment of the Proterozoic Itajaí Basin, south-east Brazil. Basin Research 11, 127142.
Saager, RB, Balu, M, Crosignani, V, Sharif, A, Durkin, AJ, Kelly, KM and Tromberg, BJ (2015) In vivo measurements of cutaneous melanin across spatial scales: using multiphoton microscopy and spatial frequency domain spectroscopy. Journal of Biomedical Optics 20, 066005.
Sagemann, J, Bale, SJ, Briggs, DE and Parkes, RJ (1999) Controls on the formation of authigenic minerals in association with decaying organic matter: an experimental approach. Geochimica et Cosmochimica Acta 63, 10831095.
Schieber, J, Bose, PK, Eriksson, PG, Banerjee, S, Sarkar, S, Altermann, W and Catuneanu, O (eds) (2007) Atlas of Microbial mat Features Preserved Within the Siliciclastic Rock Record, vol. 2. Amsterdan: Elsevier.
Schiffbauer, JD, Xiao, S, Cai, Y, Wallace, AF, Hua, H, Hunter, J, Huifang, X, Peng, Y and Kaufman, AJ (2014) A unifying model for Neoproterozoic–Palaeozoic exceptional fossil preservation through pyritization and carbonaceous compression. Nature Communications 5, 5754.
Schopf, JW, Farmer, JD, Foster, IS, Kudryavtsev, AB, Gallardo, VA and Espinoza, C (2012) Gypsum-permineralized microfossils and their relevance to the search for life on Mars. Astrobiology 12, 619633.
Schopf, JW, Kudryavtsev, AB, Agresti, DG, Czaja, AD and Wdowiak, TJ (2005) Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils. Astrobiology 5, 333371.
Sperling, EA, Halverson, GP, Knoll, AH, Macdonald, FA and Johnston, DT (2013) A basin redox transect at the dawn of animal life. Earth and Planetary Science Letters 371, 143155.
Toporski, JK, Steele, A, Westall, F, Thomas-Keprta, KL and McKay, DS (2002) The simulated silicification of bacteria—new clues to the modes and timing of bacterial preservation and implications for the search for extraterrestrial microfossils. Astrobiology 2, 126.
Traverse, A (2007) What paleopalynology is and is not. In Traverse A. (ed), Paleopalynology. Dordrecht: Springer, pp. 143.
Trueman, CN (2013) Chemical taphonomy of biomineralized tissues. Palaeontology 56, 475486.
Tütken, T, Vennemann, TW and Pfretzschner, HU (2011) Nd and Sr isotope compositions in modern and fossil bones – proxies for vertebrate provenance and taphonomy. Geochimica et Cosmochimica Acta 75, 59515970.
Vermeij, GJ (1989) The origin of skeletons. Palaios 5, 585589.
Vermeij, GJ (2002) Evolution in the consumer age: predators and the history of life. Paleontological Society Papers 8, 375393.
Wacey, D (2009) Early Life on Earth: A practical Guide. Springer, New York.
Wacey, D (2010) Stromatolites in the ~3400 Ma Strelley Pool Formation, Western Australia: examining biogenicity from the macro-to the nano-scale. Astrobiology 10, 381395.
Wacey, D, Saunders, M, Kong, C and Brasier, M (2015) Solving the controversy of Earth's oldest fossils using electron microscopy. Microscopy and Microanalysis 21, 20912092.
Wacey, D, Saunders, M, Kong, C and Brasier, M (2016) Solving the Controversy of Earth’s Oldest Fossils Using Electron Microscopy. Microscopy Today 24, 1217.
Warren, LV, Simões, MG, Fairchild, TR, Riccomini, C, Gaucher, C, Anelli, LE, Freitas, BT, Boggiani, PC and Quaglio, F (2013) Origin and impact of the oldest metazoan bioclastic sediments. Geology 41, 507510.
Weiner, S (2008) Biomineralization: a structural perspective. Journal of Structural Biology 163, 229234.
Westall, F, Foucher, F, Bost, N, Bertrand, M, Loizeau, D, Vago, JL, Kminek, G, Gaboyer, F, Campbell, KA, Bréhéret, J, Gautret, P and Cockell, CS (2015) Biosignatures on Mars: what, where, and how? Implications for the search for martian life. Astrobiology 15, 9981029.
Wood, R and Penny, A (2018) Substrate growth dynamics and biomineralization of an Ediacaran encrusting poriferan. Proceedings of the Royal Society B 285, 20171938.
Wood, R, Ivantsov, AYu and Zhuravlev, AYu (2017 a) First macrobiota biomineralization was environmentally triggered. Proceedings of the Royal Society B 284, 20170059.
Wood, R, Zhuravlev, AYu, Sukhov, S, Zhu, M and Zhao, F (2017 b) Demise of Ediacaran dolomitic seas marks widespread biomineralization on the Siberian Platform. Geology 45, 2730.
Wood, RA and Zhuravlev, AY (2012) Escalation and ecological selectively of mineralogy in the Cambrian Radiation of skeletons. Earth-Science Reviews 115, 249261.
Wood, RA, Grotzinger, JP and Dickson, JAD (2002) Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science 296, 23832386.
Xiao, S and Laflamme, M (2009) On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology & Evolution 24, 3140.
Xiao, S, Yuan, X, Steiner, M and Knoll, AH (2002) Macroscopic carbonaceous compressions in a terminal Proterozoic shale: a systematic reassessment of the Miaohe biota, South China. Journal of Paleontology 76, 347376.
Zhuravlev, AY and Wood, RA (2008) Eve of biomineralization: controls on skeletal mineralogy. Geology 36, 923926.
Zhuravlev, AY, Liñán, E, Vintaned, JAG, Debrenne, F and Fedorovet, AB (2012) New finds of skeletal fossils in the terminal neoproterozoic of the Siberian platform and Spain. Acta Palaeontologica Polonica 57, 205224.
Zhuravlev, AY, Wood, RA and Penny, AM (2015) Ediacaran skeletal metazoan interpreted as a lophophorate. Proceedings of the Royal Society B 282, 20151860.


Type Description Title
Supplementary materials

Gomes et al. supplementary material
Gomes et al. supplementary material 1

 PDF (128 KB)
128 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed