Skip to main content Accessibility help
×
Home

From cosmos to intelligent life: the four ages of astrobiology

  • Marcelo Gleiser (a1)

Abstract

The history of life on Earth and in other potential life-bearing planetary platforms is deeply linked to the history of the Universe. Since life, as we know, relies on chemical elements forged in dying heavy stars, the Universe needs to be old enough for stars to form and evolve. The current cosmological theory indicates that the Universe is 13.7 ± 0.13 billion years old and that the first stars formed hundreds of millions of years after the Big Bang. At least some stars formed with stable planetary systems wherein a set of biochemical reactions leading to life could have taken place. In this paper, I argue that we can divide cosmological history into four ages, from the Big Bang to intelligent life. The physical age describes the origin of the Universe, of matter, of cosmic nucleosynthesis, as well as the formation of the first stars and Galaxies. The chemical age began when heavy stars provided the raw ingredients for life through stellar nucleosynthesis and describes how heavier chemical elements collected in nascent planets and Moons gave rise to prebiotic biomolecules. The biological age describes the origin of early life, its evolution through Darwinian natural selection and the emergence of complex multicellular life forms. Finally, the cognitive age describes how complex life evolved into intelligent life capable of self-awareness and of developing technology through the directed manipulation of energy and materials. I conclude discussing whether we are the rule or the exception.

Copyright

Corresponding author

References

Hide All
Abel, T., Bryan, G.L. & Norman, M.L. (2000). Astron. Astrophys. 540, 3944.
Abraham, R.G. & van der Bergh, S. (2001). Science 293, 1273.
Arrhenius, S. (1908). Worlds in the Making: The Evolution of the Universe. Harper & Row, New York.
Beckwith, S.V.W. (2008). Astrophys. J. 684, 14041415.
Bonner, W.A. (1995). The quest for chirality. In Physical Origin of Homochirality in Life (AIP Conference Proceedings 379), ed. Cline, D.. AIP Press, New York.
Bousso, R. & Polchinski, J. (2000). J. High Energy Phys. 6, 6.
Bouwens, R.J. et al. (2011). Nature 469, 504507.
Caldwell, R.R., Kamionkowski, M. & Weinberg, N.N. (2003). Phys. Rev. Lett. 91, 071301.
Carroll, S.M. & Chen, J. (2005). Int. J. Mod. Phys. D14, 2335.
Cassan, A. et al. (2012). Nature 481, 167169.
Chyba, C. & Sagan, C. (1992). Nature 355, 125.
Cohen, B.A., Swindle, T.D. & Kring, D.A. (2000). Science 290, 17541755.
COROT website (2012) http://smsc.cnes.fr/COROT/
Cronin, J.R. (1989). Adv. Space Res. 9, 59.
Cronin, J.R. & Pizzarello, S. (1986). Geochim. Cosmochim. Acta 50, 2419.
Dalrymple, G.B. (2001). Geol. Soc. London 190, 205221.
Davies, P.C.W. & Lineweaver, C.H. (2005). Astrobiology 5, 154.
Dyson, F. (1999). Origins of Life (1985), 2nd edn. Princeton University Press, Princeton, NJ.
Eigen, M. et al. (1991). Biochemistry 30, 1100511008.
Eisenstein, D.J. et al. (2011). Astron. J. 142, 72 and references therein.
Fenchel, T. (2002). Origin and Early Evolution of Life. Oxford University Press, Oxford, UK.
Fishkis, M. (2007). Orig. Life Evol. Biosph. 37, 537.
Fitz, D., Reiner, H., Plakensteiner, K. & Rode, B. (2007). Curr. Chem. Biol. 1, 41.
Fox, S. (1973). Pure Appl. Chem 34, 641.
Fox, S. (1995). J. Biol. Phys. 20, 17.
Freedman, W.L. et al. (2001). Astrophys. J. 553, 4772.
Gilbert, W. (1986). Nature 319, 618.
Gleiser, M. (2010). A Tear at the Edge of Creation: A Radical New Vision for Life in an Imperfect Universe. Free Press, New York.
Gleiser, M. & Walker, S.I. (2009). Orig. Life Evol. Biosph. 39, 479 [arXiv:0810.5398].
Gleiser, M. & Walker, S.I. (2010) The Chirality of Life: From Phase Transitions to Astrobiology. DOI: 10.1142/9789814304887_0002 [arXiv:0810.5398].
Jarosik, N. et al. (2011). Astrophys. J. Suppl. 192, 14.
Johson, A.P. et al. (2008). Science 322, 404.
Joyce, G.F. (2002). Nature 418, 214P21.
Kaltenegger, L. & Sasselov, D. (2011). Astrophys. J. Lett. 736, L25.
Kaltenegger, L. et al. (2010). Astrobiology 10, 1.
Kasting, J.F., Whitmire, D.P. & Reynolds, R.T. (1993). Icarus 101, 108.
KEPLER website (2012) http://kepler.nasa.gov/
Lazcano, A. & Bada, J.L. (2004). Orig. Life Evol. Biosp. 33, 235.
Linde, A.D. (1983). Phys. Lett. B 129, 177. [A general overview of Linde's many contributions can be found in A. Linde, Inflation, Quantum Cosmology, and the Anthropic Principle. In Science and Ultimate Reality, eds. Barrow, J.D., Davies, P.C.W. & Harper, C.L. Jr. Cambridge University Press, Cambridge, 2004].
Livio, M. (1999). Astrophys. J. 511, 429.
Lunine, J.I. (2005). Astrobiology: A Multidisciplinary Approach. Addison-Wesley, San Francisco, (In particular, chapter 16).
Mac Low, M. & Ferrara, A. (1999). Astrophys. J. 513, 142.
Miller, S.L. (1953). Science 117, 528.
Monnard, P.A. & Deamer, D. (2002). Anat. Rec. 268, 196.
Morowitz, H.J., Heinz, B. & Deamer, D. (1988). Orig. Life Evol. Biosph 18, 281.
Oparin, A.I. (2003). The Origin of Life (1924). Dover, New York.
Orgel, L.E. (1998). Trends Biochem. Sci. 23, 491.
Orgel, L. (2000a). Proc. Natl. Acad. Sci. U.S.A. 97, 1250312507.
Orgel, L. (2000b). Science 290, 1306.
Prigogine, I. (1967). Introduction to Thermodynamics of Irreversible Processes. John Wiley & Sons, New York.
Sagan, L. (1967). J. Theor. Biol. 14, 255274.
Salama, F. (2008). In Organic Matter in Space Proceedings IAU Symposium No. 251, eds. Kwok, S. & Sandford, S.. Cambridge University Press, Cambridge.
Segrè, D., Ben-Eli, D., Deamer, D. & Lancet, D. (2001). Origins Life Evol. Biosphere 31, 119145.
Smoot, G.W. (1999). Summary of results from COBE. AIP Conf. Proc. 476, 110.
Sullivan, W.T. & Baross, J. (eds). (2007). Planets and Life: The Emerging Science of Astrobiology. Cambridge University Press, Cambridge, UK.
Susskind, L. (2003). The Anthropic Landscape of String Theory. arXiv:hep-th/0302219
Susskind, L. (2006). The Cosmic Landscape: String Theory and the Illusion of Intelligent Design. Little Brown, New York.
Tarter, J. (2001). Annu. Rev. Astron. Astrophys. 39, 511548.
Vilenkin, A.D. (1983). Phys. Rev. D 27, 2848.
Wächtershäuser, G. (1992). Prog. Biophys. Mol. Biol. 58, 85.
Ward, P. & Brownlee, D. (2003). Rare Earth: Why Complex Life Is Uncommon in the Universe. Springer, New York.
Webb, S. (2002). If the Universe is Teeming with Aliens…Where is Everybody?: Fifty Solutions to the Fermi Paradox and the Problem of Extraterrestrial Life. Copernicus Books, New York.
Weber, P. & Greenberg, J.M. (1985). Nature 316, 403407.
Weinberg, S. (2007). Living in the multiverse. In Universe or Multiverse? ed. Carr, B.. Cambridge University Press, Cambridge.
Yoshida, N., Omukai, K. & Hernquist, L. (2008). Science 321, 669671.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed