Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T12:42:03.537Z Has data issue: false hasContentIssue false

Concretions in exhumed and inverted channels near Hanksville Utah: implications for Mars

Published online by Cambridge University Press:  25 February 2011

Jonathan D. A. Clarke
Affiliation:
Mars Society Australia, c/o 43 Michell St Monash, ACT 2904, Australia Australian Centre for Astrobiology, Ground Floor, Biological Sciences Building, Sydney, NSW, Australia e-mail: jon.clarke@bigpond.com
Carol R. Stoker
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035, USA

Abstract

The landscape near Hanksville, Utah, contains a diversity of Mars analogue features. These included segmented and inverted anastomosing palaeochannels exhumed from the Late Jurassic Brushy Basin Member of the Morrison Formation that hosts abundant small carbonate concretions. The exhumed and inverted channels closely resemble many seen on the surface of Mars in satellite imagery and which may be visited by surface missions in the near future. The channels contain a wealth of palaeoenvironmental information and are potentially of astrobiological interest, but intrinsically difficult terrain would make their study challenging on Mars. We show that an un-exhumed channel feature can be detected geophysically, and this may allow their study in more easily accessed terrain. The concretion's morphology and surface expression parallel the haematite ‘blue berries’ that are strewn across the surface of Meridiani Planum on Mars. They are best developed in poorly cemented medium to coarse channel sandstones and appear to have formed during deep burial.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Battler, M.M., Clarke, J.D.A. & Coniglio, M. (2006). Possible analog sedimentary and diagenetic features for Meridiani Planum sediments near Hanksville, Utah: implications for Martian field studies. In Mars Analog Research, ed. Clarke, J.D.A., pp. 5570. American Astronautical Society Science and Technology Series 111. Univvelt Inc, San Diego, California.Google Scholar
Benison, K.C. & Bowen, B.B. (2006). Acid saline lake systems give clues about past environments and the search for life on Mars. Icarus 183, 225229.CrossRefGoogle Scholar
Benison, K.C., Bowen, B.B., Oboh-Ikuenobe, F.E., Jagniecki, E.A., Laclair, D.A., Story, S.L., Mormile, R.M. & Hong, B.-Y. (2007). Sedimentology of acid saline lakes in southern Western Australia: newly described processes and products of an extreme environment. J. Sediment. Res. 77, 366388.Google Scholar
Bhattacharya, J.P., Payenberg, T.H.D., Lang, S.C. & Bourke, M. (2005). Dynamic river channels suggest a long-lived Noachian crater lake on Mars. Geophys. Res. Lett. 32, L10201. doi:10.1029/2005GL022747.Google Scholar
Burr, D.M., Enga, M.T., Williams, R.M.E., Zimbelman, J.R., Howard, A.D. & Brennan, T.A. (2009). Pervasive aqueous paleoflow features in the Aeolis/Zephyria Plana region, Mars. Icarus 200, 5276.Google Scholar
Chan, M.A., Beitler, B., Parry, W.T., Ornö, J. & Komatsu, G. (2004). A possible terrestrial analogue for haematite concretions on Mars. Nature 429, 731734.Google Scholar
Clarke, J.D.A. & Pain, C.F. (2004). From Utah to Mars: regolith-landform mapping and its application. In Mars Expedition Planning, ed. Cockell, C.C., pp. 131160. American Astronautical Society Science and Technology Series 107.Google Scholar
Clifton, H.E. (1957). The carbonate concretions of the Ohio shale. Ohio J. Sci. 57, 114124. Univvelt Inc, San Diego, California.Google Scholar
Corbeanu, R.M., Wizevich, M.C., Bhattacharya, J.P., Zeng, X. & McMechan, G.A. (2001). Three-dimensional architecture of ancient lower delta-plain point bars using ground-penetrating radar, Cretaceous Ferron Sandstone, Utah. AAPG Stud. Geol. 50, 427449.Google Scholar
Crook, K.A.W. (1960). Classification of arenites. Am. J. Sci. 258, 419428.CrossRefGoogle Scholar
Demko, T.M., Currie, B.S. & Nicoll, K.A. (2004). Regional paleoclimatic and stratigraphic implications of paleosols and fluvial/overbank architecture in the Morrison formation (Upper Jurassic), Western Interior, USA. Sediment. Geol. 167, 115135.Google Scholar
Demko, T.M. & Parish, J.T. (2001). Paleoclimatic setting of the Upper Jurassic Morrison formation. Mod. Geol. 22, 283296.Google Scholar
Finston, T.L., Johnson, M.S., Humphreys, W.F., Eberhard, S.M. & Halse, S.A. (2007). Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Mol. Ecol. 16, 355365.Google Scholar
Foing, B., Stoker, C., Zavaleta, J., Ehrenfreund, P., Thiel, C., Sarrazin, P., Blake, D., Page, J., Pletser, V., Hendrikse, J. et al. (2011). Field astrobiology research in Moon–Mars analogue environment: instruments and methods. Int. J. Astrobiol. (in press).Google Scholar
Harris, D.R. (1980). Exhumed paleochannels in the Lower Cretaceous Cedar Mountain formation near Green river. Utah: Brigham Young Univ. Geol. Stud. 27, 5166.Google Scholar
Heim, J.A., Vasconcelos, P.M., Shuster, D.L., Farley, K.A. & Broadbent, G. (2006). Dating paleochannel iron ore by (U-Th)/He analysis of supergene goethite, Hamersley province, Australia. Geology 34(3), 173176.Google Scholar
Hintze, L.H. & Kowallis, B.J. (2009). The Geologic History of Utah Brigham. Young University Geology Studies Special Publication 9. Department of Geology, Brigham Young University, Provo, Utah, 202 p.Google Scholar
Howard, A.D., Moore, J.M. & Irwin, R.P. (2005). An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. J. Geophys. Res. 110(E12S14), doi:10.1029/2005JE002459.Google Scholar
Irwin, R.P., Howard, A.D. III, Craddock, R.A. & Moore, J.M. (2005). An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J. Geophys. Res. 110(E12S15), doi:10.1029/2005JE002460.Google Scholar
Kim, S.S., Carnes, S.R., Haldemann, A.F., Ulmer, C.T., Ng, E. & Arcone, S.A. (2006). Miniature Ground Penetrating Radar, CRUX GPR. Presentation to IEEE Aerospace Conference, Big Sky, Montana, 6–9 March 2006. http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/38905/1/06-0566.pdfGoogle Scholar
Kjemperud, A.V., Schomacker, E.R. & Cross, T.A. (2008). Architecture and stratigraphy of alluvial deposits, Morrison formation (Upper Jurassic), Utah. AAPG Bull. 92(8), 10551076.CrossRefGoogle Scholar
Klingelhofer, G., Morris, R.V., Bernhardt, B., Schröder, C., Rodionov, D.S., de Souza, P.A., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B. et al. (2004). Jarosite and hematite at Meridiani Planum form Mossbauer spectrometer on the Opportunity rover. Science 306, 17401745.CrossRefGoogle Scholar
Lucchitta, B.K. (2005). Light layer and sinuous ridges on plateau near Juventae Chasma, Mars. In .Google Scholar
Macphail, M.K. & Stone, M.S. (2004). Age and palaeoenvironmental constraints on the genesis of the Yandi channel iron deposits, Marillana formation, Pilbara, northwestern Australia. Aust. J. Earth Sci. 51, 497520.CrossRefGoogle Scholar
Mangold, N., Ansan, V., Masson, P., Quantin, C. & Neukum, G. (2008). Geomorphic study of fluvial landforms on the northern Valles Marineris plateau, Mars. J. Geophys. Res. 113(E08009), doi:10.1029/2007JE002985.Google Scholar
Marzo, G.A., Oush, T.L., Lanza, N.L., McGuire, P.C., Newso, H.E., Olilla, A.M. & Wiseman, S.M. (2009). Mineralogy of the inverted channel on the floor of Miyamoto Crater, Mars. In .Google Scholar
McLennan, S.M., Bell, J.F., Calvin, W.M., Christensen, P.R., Clark, B.C., de Souza, P.A., Farmer, J., Farrand, W.H., Fike, D.A., Gellert, R. et al. (2005). Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 95121.CrossRefGoogle Scholar
McNally, H.H. & Wilson, I.R. (1995). Silcretes of the Mirackina Palaeochannel, Arckaringa, South Australia. AGSO J. Austr. Geol. Geophys. 16, 295301.Google Scholar
Miall, A.E. & Turner-Peterson, C. (1989). Variations in fluvial style in Westwater canyon Member, Morrison formation (Jurassic), San Juan Basin, Colorado Plateau. Sediment. Geol. 63, 2160.CrossRefGoogle Scholar
Miazels, J.K. (1987). Plio-Pleistocene raised channel systems of the western Sharqiya (Wahiba), Oman. Geological Society, London, Special Publications 35, 3150.Google Scholar
Morris, R.V., Ming, D.W., Graff, T.G., Arvidson, R.E., Bell, J.F., Squyres, S.W., Mertzman, S.A., Gruener, J.E., Golden, D.C., Le, L.et al. (2005). Hematite spherules in basaltic tephra altered under aqueous, acid-sulfate conditions on Mauna Kea volcano, Hawaii: possible clues for the occurrence of hematite-rich spherules in the Burns formation at Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 168178.Google Scholar
Morris, R.C. & Ramanaidou, E.R. (2007). Genesis of the channel iron deposits (CID) of the Pilbara region, Western Australia’. Aust. J. Earth Sci. 54(5), 733756.Google Scholar
Morris, R.V., Ruff, S.W., Gellert, R., Ming, D.W., Arvidson, R.E., Clark, B.C., Golden, D.C., Siebach, K., Klingelhöfer, G., Schröder, C. et al. (2010). Identification of carbonate-rich outcrops on Mars by the Spirit Rover. Science 239, 421424. DOI: 10.1126/science.1189667.Google Scholar
Murchie, S.L., Mustard, J.F., Ehlmann, B.L., Milliken, R.E., Bishop, J.L., McKeown, N.K., Dobrea, E.Z.N., Seelos, F.P., Buczkowski, D.L., Wiseman, S.M. et al. (2009). A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. 114(E00D06), doi:10.1029/2009JE003342.Google Scholar
Newsome, N.E., Lanza, N.L., Ollila, A.M., Wiseman, S.M., Roush, T.L., Marzo, G.A., Tornabene, L.L., Okubo, C.H., Osterloo, M.M., Hamilton, V.E. et al. (2010). Inverted channel deposits on the floor of Miyamoto crater, Mars. Icarus 205, 6472.CrossRefGoogle Scholar
Pain, C.F., Clarke, J.D.A. & Thomas, M. (2007). Inversion of relief on Mars. Icarus 190, 478491.Google Scholar
Pain, C.F. & Ollier, C.D. (1995). Inversion of relief – a component of landscape evolution. Geomorphology 12(2), 151165.Google Scholar
Persaud, R., Rupert-Robles, S., Clarke, J.D.A., Dawson, S., Mann, G., Waldie, J., Piechocinski, S. & Roesch, J. (2004). Expedition one: a Mars analog research station thirty-day mission. In Mars Expedition Planning, ed. Cockell, C.C., pp. 5388. American Astronautical Society Science and Technology Series 107. Univvelt Inc, San Diego, California.Google Scholar
Rice, M.S. & Bell, J.F. (2010). Geologic mapping of the proposed Mars Science Laboratory (MSL) landing ellipse in Eberswalde Crater. In .Google Scholar
Sarrazin, P., Blake, D., Feldman, S., Chipera, S., Vaniman, D. & Bish, D. (2005). Field deployment of a portable X-ray diffraction/X-ray fluorescence instrument on Mars analog terrain. Powder Diffr. 20(2), 128133.CrossRefGoogle Scholar
Sefton-Nash, E. & Catling, D.C. (2008). Hematitic concretions at Meridiani Planum, Mars: their growth timescale and possible relationship with iron sulfates. Earth Planet. Sci. Lett.. 269, 365375.Google Scholar
Selles-Martinez, J. (1996). Concretion morphology, classification and genesis. Earth Sci. Rev. 41, 177210.Google Scholar
Shiro, B.R. & Ferrone, K.L. (2010). In situ geophysical exploration by humans in Mars analog environments. In .Google Scholar
Soderblom, L.A., Anderson, R.C., Arvidson, R.E., Bell, J.F., Cabrol, N.A., Calvin, W., Christensen, P.R., Clark, B.C., Economou, T., Ehlmann, B.L. et al. (2004). The soils of Eagle crater and Meridiani Planum. Science 306, 17231726.Google Scholar
Stoker, C.R., Clarke, J., Direito, S., Martin, K., Zavaleta, J., Blake, D. & Foing, F. (2011). Chemical, mineralogical, organic and microbial properties of subsurface soil cores from the Mars Desert Research Station Utah: analog science for human missions on Mars. Int. J. Astrobiol. (in press).Google Scholar
Thomas, M. & Walter, M.R. (2002). Application of hyperspectral infrared analysis of hydrothermal alteration on Earth and Mars. Astrobiology 2(3), 335351.CrossRefGoogle ScholarPubMed
Western Regional Climate Center (2010). Climate Data for Hanksville Utah. http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?uthankGoogle Scholar
Williams, P.L. & Hackman, R.J. (1971). Geology of the Salina quadrangle, Utah. United States Geological Survey Miscellaneous Geological Investigations 1:250,000 scale geological map I-591-A., Department of the Interior.Google Scholar
Williams, R.M.E., Irwin, R.P. & Zimbelman, J.R. (2009). Evaluation of paleohydrologic models for terrestrial inverted channels: Implications for application to Martian sinuous ridges. Geomorphology 107, 300315.Google Scholar