Skip to main content Accessibility help

An Assessment of macro-scale in situ Raman and ultraviolet-induced fluorescence spectroscopy for rapid characterization of frozen peat and ground ice

  • Janelle R. Laing (a1), Hailey C. Robichaud (a2) and Edward A. Cloutis (a2)


The search for life on other planets is an active area of research. Many of the likeliest planetary bodies, such as Europa, Enceladus, and Mars are characterized by cold surface environments and ice-rich terrains. Both Raman and ultraviolet-induced fluorescence (UIF) spectroscopies have been proposed as promising tools for the detection of various kinds of bioindicators in these environments. We examined whether macro-scale Raman and UIF spectroscopy could be applied to the analysis of unprocessed terrestrial frozen peat and clear ground ice samples for detection of bioindicators. It was found that this approach did not provide unambiguous detection of bioindicators, likely for a number of reasons, particularly due to strong broadband induced fluorescence. Other contributing factors may include degradation of organic matter in frozen peat to the point that compound-specific emitted fluorescence or Raman peaks were not resolvable. Our study does not downgrade the utility of either UIF or Raman spectroscopy for astrobiological investigations (which has been demonstrated in previous studies), but does suggest that the choice of instrumentation, operational conditions and sample preparation are important factors in ensuring the success of these techniques.



Hide All
Bakker, R.J. (2004). Raman spectra of fluid and crystal mixtures in the systems H2O, H2O-NaCl and H2O-MgCl2 at low temperatures: applications to fluid inclusion research. Can. Min. 42, 12831314.
Barsberg, S., Matousek, P. & Towrie, M. (2005). Structural analysis of lignin by resonance Raman spectroscopy. Macromol. Biosci. 5, 743752.
Bay, R., Bramall, N. & Price, P.B. (2005). Search for microbes and biogenic compounds in polar ice using fluorescence. In Life in Ancient Ice, eds. Castello, J.D. & Rogers, S.O., pp. 268276. Princeton University Press, Princeton, NJ.
Beegle, L.W. et al. (2014). SHERLOC: Scanning habitable environments with Raman and luminescence for organics and chemicals, an investigation for 2020. Lunar and Planetary Science Conf. 45, abstract #2835.
Böttger, U., de Vera, J.P., Fritz, J., Weber, I., Hübers, H.W. & Schulze-Makuch, D. (2012). Optimizing the detection of carotene in cyanobacteria in a martian regolith analogue with a Raman spectrometer for the ExoMars mission. Planet. Space Sci. 60(1), 356362.
Boynton, W., Feldman, W., Squyres, S., Prettyman, T., Bruckner, J., Evans, L., Reedy, R., Starr, R., Arnold, J. & Drake, D. (2002). Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297, 8185.
Byrne, S., Dundas, C.M., Kennedy, M.R., Mellon, M.T., McEWwan, A.S., Cull, S.C., Dauber, I.J., Shean, D.E., Seelos, K.D. & Murchie, S.L. (2009). Distribution of mid-latitude ground ice on Mars from new impact craters. Science 325, 16741676.
Cai, Z.-L., Zeng, H., Chen, M. & Larkum, A.W.D. (2002). Raman spectroscopy of chlorophyll d from Acaryochloris marina . Biochimica et Biophysica Acta 1556, 8991.
Carrozzo, F.G., Bellucci, G., Altieri, F., D'Aversa, E. & Bibring, J.-P. (2009). Mapping of water frost and ice at low latitudes on Mars. Icarus 203, 406420.
Dartnell, L.R., Patel, M.R., Storrie-Lombardi, M.C., Ward, J.M. & Muller, J.-P. (2012). Experimental determination of photostability and fluorescence-based detection of PAHs on the martian surface. Meteorit. Planet. Sci. 47, 806819.
De Gelder, J., De Gussem, K., Vandenabeele, P. & Moens, L. (2007). Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 38, 11331147.
Edwards, H.G.M., Hutchinson, I.B., Ingley, R., Parnell, J., Vitek, P. & Jehlicka, J. (2013). Raman spectroscopic analysis of geological and biogeological specimens of relevance to the ExoMars mission. Astrobiology 13, 543549.
Eshelman, E., Daly, M.G., Slater, G., Dietrich, P. & Gravel, J.-F. (2014). Ultraviolet Raman wavelength for the in-situ analysis of organic compounds relevant to astrobiology. Planet. Space Sci. 93–94, 6570.
European Space Agency (2014). ExoMars Mission (2018). (accessed 23 October 2014).
Farmer, C.B. & Doms, P.E. (1979). Global seasonal variation of water vapour on Mars and implications for permafrost. J. Geophys. Res. 84, 28812888.
Faure, P. & Chosson, A. (1978). The translational lattice-vibration Raman spectrum of singe-crystal ice Ih. J. Glaciol. 21, 6572.
Fisk, M.R., Storrie-Lombardi, M.C., Douglas, S., Popa, R., McDonald, G. & Di Meo-Savoie, C. (2003). Evidence of biological activity in Hawaiian subsurface basalts. Geochem. Geophys. Geosy. 4(12). doi:10.1029/2002GC000387.
Fukazawa, H. & Mae, S. (2000). The vibrational spectra of ice Ih and polar ice. In Physics of Ice Core Records. ed. Hondoh, T. Hokkaido University Press, Hokkaido, Japan, pp. 2542.
Gavrilov, M.Z. & Ermolenko, I.N. (1966). A study of cellulose luminescence. Zhurnal Prikladnoi Spektroscopii 5, 762765.
Gierlinger, N., Keplinger, T. & Harrington, M. (2012). Imaging of plant cell walls by confocal Raman microscopy. Nat. Protoc. 7, 16941708.
Gremlich, H.-U. & Yan, B. (2001). Infrared and Raman Spectroscopy of Biological Materials. CRC Press, New York, NY.
Groemer, G., Sattler, B., Weisleitner, K., Hunger, L., Kohstall, C., Frisch, A., Josefowicz, M., Meszynski, S., Storrie-Lombardi, M. & the MARS2013 Team (2014). Field trial of a dual-wavelength fluorescent emission (L.I.F.E.) instrument and the Magma White Rover during the MARS2013 Mars Analog Mission. Astrobiology 14, 391405.
Heldmann, J.L., Schurmeier, L., McKay, C., Davila, A., Stoker, C., Marinova, M. & Wilhelm, M.B. (2014). Midlatitude ice-rich ground on Mars as a target in the search for evidence of life and for in situ resource utilization on human missions. Astrobiology 14, 102118.
Jorge-Villar, S.E. & Edwards, H.G.M. (2006). Raman spectroscopy in astrobiology. Anal. Bioanal. Chem. 384, 100113.
Maurice, S. et al. and the SuperCam Team (2015). Science objectives of the SuperCam instrument for the Mars2020 rover. Lunar and Planetary Science Conf. 46, abstract #2818.
Mellon, M.T. & Jakosky, B.M. (1993). Geographic variations in the thermal and diffusive stability of ground ice on Mars. J. Geophys. Res. 98, 33453364.
Mellon, M.T. & Jakosky, B.M. (1995). The distribution and behaviour of martian ground ice during past and present epochs. J. geophys. Res. 100, 1178111799.
Miteva, V., Teacher, C., Sowres, T. & Brenchley, J. (2009). Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ. Microb. 11, 640656.
Mitrofanov, I.’ et al. (2002). Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey. Science 297, 7881.
Mustard, J.F. et al. (2013). Report of the Mars 2020 Science Definition Team, 154 pp., posted July 2013, by the Mars Exploration Program Analysis Group (MEPAG) at http://mepag.jpl,
Paige, D. (1992). The thermal stability of near-surface ground ice on Mars. Nature 356, 4345.
Papageorgiou, G.C. (Ed.). (2004). Chlorophyll a Fluorescence: A Signature of Photosynthesis (Vol. 19). Springer, Dordretch, The Netherlands, 3, pp. 4748.
Park, S.-H., Kim, Y.-G., Kim, D., Cheong, H.-D., Choi, W.-S. & Lee, J.-I. (2010). Selecting characteristic Raman wavelengths to distinguish liquid water, water vapour, and ice water. J. Opt. Soc. Korea 14, 209214.
Ponosov, Y.S. & Stretslov, S.V. (2012). Measurements of Raman scattering by electrons in metals: the effects of electron-phonon coupling. Phys. Rev. B 86, 045138.
Price, P.B. & Sowers, T. (2004). Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl. Acad. Sci. U. S. A. 101, 46314636.
Rapp, D. (2012). Use of Extraterrestrial Resources for Human Space Missions toMmoon or Mars. Springer Science & Business Media, Heidelberg, Germany.
Rohde, R.A. & Price, P.B. (2007). Diffusion-controlled metabolism for long-term survival of single isolated microorganisms trapped within ice crystals. Proc. Natl. Acad. Sci. U. S. A. 104, 1659216597.
Rohde, R.A., Price, P.B., Bay, R.C. & Bramall, N. (2008). In situ microbial metabolism as a cause of gas anomalies in ice. Proc. Natl. Acad. Sci. U. S. A. 10, 86678867.
Rivkina, E., Laurinavichyus, K. & Gilinchinsky, D.A. (2005). Microbial life below the freezing point within permafrost. In Life in Ancient Ice, eds. Castello, J.D. & Rogers, S.O., pp. 106117. Princeton University Press, Princeton, NJ.
Rull, F., Maurice, S., Diaz, E., Lopez, G., Catala, A. & RLS Team (2013). Raman laser spectrometer (RSL) for ExoMars 2018 rover mission: Current status and science operation mode on powdered samples. Lunar and Planetary Science Conf. 44, abstract #3110.
Sattler, B., Storrie-Lombardi, M.C., Foreman, C.M., Tilg, M. & Psenner, R. (2010). Laser-induced fluorescence emission (LIFE) from Lake Fryxall (Antarctica) cryoconites. Ann. Glaciol. 51, 145152.
Schenzel, K. & Fischer, S. (2004). Applications of FT Raman spectroscopy for the characterization of cellulose. Lenzinger Berichte 83, 6470.
Schuur, E.A.G., Vogel, J.G., Krummer, K.C., Lee, H., Sickman, J.O. & Osterkamp, T.E. (2009). The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556559.
Schuur, E.A.G. & Abbott, B. (2011). High risk of permafrost thaw. Nature 480, 3233.
Serrano, P., Wagner, D., Böttger, U., de Vera, J.P., Lasch, P. & Hermelink, A. (2014). Single-cell analysis of the methanogenic archaeon Methanosarcina soligelidi from Siberian permafrost by means of confocal Raman microspectrocopy for astrobiological research. Planet. Space Sci. 98, 191198.
Skulinova, M. et al. (2014). Time-resolved stand-off UV-Raman spectroscopy for planetary exploration. Planet. Space Sci. 92, 88100.
Smith, P.H., Tamppari, L.K., Arvidson, R.E., Bass, D., Blaney, D., Boynton, W.V., Carswell, A., Catling, D.C., Clark, B.C., Duck, T., DeJong, E., Fisher, D., Goetz, W., Gunnlaugsson, H.P., Hecht, M.H., Hipkin, V., Hoffman, J., Hviid, S.F., Keller, H.U., Kounaves, S.P., Lange, C.F., Lemmon, M.T., Madsen, M.B., Markiewicz, W.J., Marshall, J., McKay, C.P., Mellon, M.T., Ming, D.W., Morris, R.V., Pike, W.T., Renno, N., Staufer, U., Stoker, C., Taylor, P., Whiteway, J.A., & Zent, A.P. (2009). H2O at the Phoenix landing site. Science 325(5936), 5861.
Smith, D.E. & Zuber, M.T. (1998). The relationship between MOLA northern hemisphere topography and the 6.1-Mbar atmospheric pressure surface of Mars. Geophys. Res. Lett. 25(24), 43974400.
Steven, B., Briggs, G., McKay, C.P., Pollard, W.H., Greer, C.W. & Whyte, L.G. (2007). Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. Microb. Ecol. 59, 513523.
Steven, B., Pollard, W.H., Greer, C.W. & Whyte, L.G. (2008). Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Environ. Microbiol. 10, 33883403.
Storrie-Lombardi, M.C., Hug, W.F., McDonald, G.D., Tsapin, A.I. & Nealson, H.K. (2001). Hollow cathode ion lasers for deep ultraviolet Raman spectroscopy and fluorescence imaging. Rev. Sci. Instrum. 72, 44524459.
Storrie-Lombardi, M.C. & Sattler, B. (2009). Laser-induced fluorescence emission (LIFE): in situ nondestructive detection of microbial life in the ice covers of Antarctic lakes. Astrobiology 9(7), 659672.
Tung, H.C., Bramall, N.E. & Price, P.B. (2005). Microbial origin of excess methane in glacial ice and implications for life on Mars. Proc. Natl. Acad. Sci. U. S. A. 102, 18292.
van Everdingen, R. (ed.) (1998). revised 2005. Multi-Language Glossary of Permafrost and Related Ground-Ice Terms. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, CO.
Vincendon, M., Forget, F. & Mustard, J. (2010). Water ice at low to midlatitudes on Mars. J. Geophys. Res. 115(E10). doi:10.1029/2010JE003594.
Vitek, P., Edwards, H.G.M., Jehlicka, J., Ascaso, C., De Los Rios, A., Valea, S., Jorge-Villar, S.E., Davila, A.F. & Wierzchos, J. (2014). Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Phil. Trans. R. Soc. A 368, 32053221.
Wilhelm, R.C., Radtke, K.J., Mykytczuk, N.C.S., Greer, C.W. & Whyte, L.G. (2012). Life at the wedge: the activity and diversity of Arctic ice wedge microbial communities. Astrobiology 12, 347360.
Wynn-Williams, D.D. & Edwards, H.G.M. (2000). Proximal analysis of regolith habitats and protective biomolecules in situ by laser Raman spectroscopy: overview of terrestrial Antarctic habitats and Mars analogs. Icarus 144, 486503.
Zimov, S.A., Schuur, E.A.G. & Chapin, F.S. III (2007). Permafrost and the global carbon budget. Science 312, 16121613.


Type Description Title
Supplementary materials

Laing supplementary material
Supplementary Figure 1

 Unknown (18.1 MB)
18.1 MB
Supplementary materials

Laing supplementary material
Supplementary Figure 2

 Unknown (20.0 MB)
20.0 MB
Supplementary materials

Laing supplementary material
Laing supplementary material 1

 Unknown (687 KB)
687 KB
Supplementary materials

Laing supplementary material
Laing supplementary material 2

 Excel (2.5 MB)
2.5 MB
Supplementary materials

Laing supplementary material
Supplementary Figures 1-2

 Word (5.6 MB)
5.6 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed