Skip to main content Accessibility help
×
Home
Hostname: page-component-54cdcc668b-v2dhk Total loading time: 2.464 Render date: 2021-03-09T09:14:10.349Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Study of interaction and adsorption of aromatic amines by manganese oxides and their role in chemical evolution

Published online by Cambridge University Press:  10 May 2016

Brij Bhushan
Affiliation:
Department of Chemistry, Graphic Era University, Dehradun-248002 (U.K.), India
Arunima Nayak
Affiliation:
IRIS Research-Engineering-Technology, Castelldefels, Barcelona 08860, Spain
Kamaluddin
Affiliation:
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667 (U.K.), India
Corresponding
E-mail address:

Abstract

The role of manganese oxides in concentrating organic moieties and offering catalytic activity for prebiotic reactions is investigated by studying their interaction with different aromatic amines such as aniline, p-chloroaniline, p-toluidine and p-anisidine. For all amines, metal oxides showed highest adsorption at neutral pH. The order of their adsorption capacity and affinity as revealed by the Langmuir constants was found to be manganosite (MnO) > bixbyite (Mn2O3) > hausmannite (Mn3O4) > and pyrolusite (MnO2). At alkaline pH, these manganese oxides offered their surfaces for oxidation of amines to form coloured oligomers. Analysis of the oxidation products by gas chromatography–mass spectrometry showed the formation of a dimer from p-anisidine and p-chloroaniline, while a trimer and tetramer is formed from p-toluidine and aniline, respectively. A reaction mechanism is proposed for the formation of the oligomers. While field-emission scanning electron microscopic studies confirm the binding phenomenon, the Fourier transform infrared spectroscopy analysis suggests that the mechanism of binding of amines on the manganese oxides was primarily electrostatic. The adsorption behaviour of the studied aromatic amines followed the order: p-anisidine > p-toluidine > aniline > p-chloroaniline, which is related to the basicities and structure of the amines. Our studies confirmed the significance of the role of manganese oxides in prebiotic chemistry.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Alam, T. & Kamaluddin, (1999). Bull. Chem. Soc. Jpn. 72, 16971703.CrossRefGoogle Scholar
Alam, T. & Kamaluddin, (2000). Colloids Surf. 162, 8997.CrossRefGoogle Scholar
Ali, S. & Kamaluddin, (2004). Bull. Chem. Soc. Jpn. 77, 16811686.CrossRefGoogle Scholar
Ali, S. & Kamaluddin, (2006). Bull. Chem. Soc. Jpn. 79, 15411546.CrossRefGoogle Scholar
Ali, S. & Kamaluddin, (2007). Orig. Life. Evol. Biosph. 37, 225234.CrossRefGoogle Scholar
Alam, T., Tarannum, H., Kumar, N. & Kamaluddin, (2000a). J. Colloid Interface Sci. 224, 133139.CrossRefGoogle Scholar
Alam, T., Tarannum, H., Ravi, M.N.V. & Kamaluddin, (2000b). Talanta 51, 10971105.CrossRefGoogle Scholar
Alam, T., Gairola, P., Tarannum, H., Kamaluddin, & Ravi, M.N.V. (2000c). Indian J. Chem. Technol. 7, 230235.Google Scholar
Alam, T., Tarannum, H., Ali, S. & Kamaluddin, (2002). J. Colloid Interface Sci. 245, 251256.CrossRefGoogle Scholar
Ali, S., Ahmad, J. & Kamaluddin, (2004a). Colloids Surf. A: Physicochem. Eng. Aspects 236, 165169.CrossRefGoogle Scholar
Ali, S., Alam, T. & Kamaluddin, (2004b). Astrobiology 4, 420426.Google Scholar
Antelo, J., Avena, M., Fiol, S., Lopez, R. & Arce, F. (2005). J. Colloid Interface Sci. 285, 476486.CrossRefGoogle Scholar
Arora, A.K. & Kamaluddin, (2007). Colloids Surf. A: Physicochem. Eng. Aspect 298, 186191.CrossRefGoogle Scholar
Arora, A.K. & Kamaluddin, (2009). Astrobiology 9, 165171.CrossRefGoogle Scholar
Arora, A.K., Tomar, V., Aarti, N., Venkateswararao, K. T. & Kamaluddin, (2007). Int. J. Astrobiol. 6, 267271.CrossRefGoogle Scholar
Atkins, P. & de Paul, J. (2002). Atkins’ Physical Chemistry, 7th edn. Oxford University Press, Oxford.Google Scholar
Bernal, J.D. (1951). The Physical Basis of Life. Routledge and Kegan Paul, London, p. 34.Google Scholar
Bish, D.L. & Post, J.E. (1988). Am. Mineral. 74, 861869.Google Scholar
Bhushan, B., Shanker, U. & Kamaluddin, (2011). Orig. Life Evol. Biosph. 41, 469482.CrossRefGoogle Scholar
Boyd, S.A. & Mortland, M.M. (1986). Environ. Sci. Technol. 20, 10561058.CrossRefGoogle Scholar
Burns, R.G., Burns, V.M. & Stockman, H.W. (1985). Am. Mineral. 70, 205208.Google Scholar
Chien-To, H. & Hsisheng, T. (2000). Carbon 38, 863869.Google Scholar
Chitrakar, R., Tezuka, S., Sonoda, A., Sakane, K., Ooi, K. & Hirotsu, T. (2006) J. Colloid Interface Sci. 298, 602608.CrossRefGoogle Scholar
Daou, T.J., Begin-Colin, S. & Greneche, J.M. (2007). Chem. Mater. 19, 44944505.CrossRefGoogle Scholar
De Guzman, R.N., Shen, Y.F., Shaw, B.R., Suib, S.L. & O'young, C.L. (1993). Chem. Mater. 5, 13951400.CrossRefGoogle Scholar
Ertem, G. & Ferris, J.P. (1997). J. Am. Chem. Soc. 119, 71977201.CrossRefGoogle Scholar
Friedmann, N. & Miller, S.L. (1969). Science 166, 766767.CrossRefGoogle Scholar
Ferris, J.P. & Hagan, W.J. (1986). J. Orig. Life 17, 6984.CrossRefGoogle Scholar
Ferris, J.P. & Kamaluddin, (1979). Orig. Life Evol. Biosph. 19, 609619.CrossRefGoogle Scholar
Furukawa, T. & Brindley, G.W. (1973). Clays Clay Miner. 21, 279288.CrossRefGoogle Scholar
Graf, G. & Laganly, G. (1980). Clays Clay Miner. 28, 1218.CrossRefGoogle Scholar
Govindraj, N., Mortland, M.M. & Boyd, S.A. (1987). Environ. Sci. Technol. 21, 11191123.CrossRefGoogle Scholar
Greenland, D.J., Laby, R. & Quirk, J.P. (1962). Trans. Faraday Soc. 58, 829841.CrossRefGoogle Scholar
Greenland, D.J., Laby, R. & Quirk, J.P. (1965). Trans. Faraday Soc. 61, 20242035.CrossRefGoogle Scholar
Hroacki, S. & Hiromichi, W. (1999). J. Org. Chem. 64, 58365840.Google Scholar
Issacson, P.J. & Sawhney, B.L. (1983). Clay Miner. 18, 253265.CrossRefGoogle Scholar
Jortner, J. (2006). Phil. Trans. R. Soc. B 361, 18771891.CrossRefGoogle Scholar
Julian, C.B. & Suzanne, D.G. (1992). Clays Clay Miner. 40, 273279.Google Scholar
Kamaluddin, (2001). Studies on metal ferrocyanides as prebiotic catalyst. In First Steps in the Origin of Life in the Universe, ed. Chela-Flores, J. et al. , pp. 95. Kluwer Academic Publishers, Netherlands.CrossRefGoogle Scholar
Kowalska, M. & Cocke, D.L. (1992). Clays Clay Miner. 40, 237239.CrossRefGoogle Scholar
Kowalska, M.W., Ortego, J.D. & Jezierski, A. (2001). Appl. Clay Sci. 18, 233243.CrossRefGoogle Scholar
Kobayashi, K. & Ponnamperuma, C. (1985a). Orig. Life 15, 55.Google Scholar
Kobayashi, K. & Ponnamperuma, C. (1985b). Orig. Life 16, 67.Google Scholar
Laha, S. & Luthy, R.G. (1990). Environ. Sci. Technol., 24, 363373.CrossRefGoogle Scholar
Li, L. & Stanforth, R. (2000). J. Colloid Interface Sci. 230, 1221.CrossRefGoogle Scholar
Miller, S.L. (1953). Science 117, 528529.CrossRefGoogle Scholar
Oparin, A.I. (1938). The Origin of Life. Macmillan, New York.Google ScholarPubMed
Pizzigallo, M.D.R., Ruggiero, P., Crecchio, C. & Mascolo, G. (1998). J. Agric. Food Chem. 46, 20492054.CrossRefGoogle Scholar
Soma, Y. & Soma, M. (1989). Chemosphere 18, 18951902.CrossRefGoogle Scholar
Shanker, U., Bhushan, B., Bhattacharjee, G. & Kamaluddin, (2011). Astrobiology 11, 225233.CrossRefGoogle Scholar
Shanker, U., Singh, G. & Kamaluddin, (2013). Orig. Life Evol. Biosph. 43, 207220.CrossRefGoogle Scholar
Shen, Y.F., Zerger, R.P., Suib McCurdy, L., Potter, D.I. & O'Young, C.L. (1992). J. Chem. Chem. Commun. 17, 12131214.CrossRefGoogle Scholar
Urey, H. (1952). On the early chemical history of the Earth and the origin of life. Proc. Natl. Acad. Sci. USA 38, 351363.CrossRefGoogle ScholarPubMed
Viladkar, S., Alam, T. & Kamaluddin, (1994). J. Inorg. Biochem. 53, 6978.CrossRefGoogle Scholar
Visscher, J. & Schwartz, A.W. (1989). J. Mol. Evol. 29, 284287.CrossRefGoogle Scholar
Yao, W. & Millero, F.J. (1996). Environ. Sci. Technol. 30, 536541.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 10
Total number of PDF views: 49 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 9th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Study of interaction and adsorption of aromatic amines by manganese oxides and their role in chemical evolution
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Study of interaction and adsorption of aromatic amines by manganese oxides and their role in chemical evolution
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Study of interaction and adsorption of aromatic amines by manganese oxides and their role in chemical evolution
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *