Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-8lphq Total loading time: 0.283 Render date: 2022-07-03T16:01:35.488Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Self-assembly of tholins in environments simulating Titan liquidospheres: implications for formation of primitive coacervates on Titan

Published online by Cambridge University Press:  15 May 2013

Jun Kawai
Affiliation:
Department of Chemistry and Biotechnology, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan e-mail: kawai-jun-jy@ynu.ac.jp
Seema Jagota
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035-1000, USA
Takeo Kaneko
Affiliation:
Department of Chemistry and Biotechnology, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan e-mail: kawai-jun-jy@ynu.ac.jp
Yumiko Obayashi
Affiliation:
Department of Chemistry and Biotechnology, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan e-mail: kawai-jun-jy@ynu.ac.jp
Yoshitaka Yoshimura
Affiliation:
Department of Life Science, Tamagawa University, Machida, Tokyo 194-8600, Japan
Bishun N. Khare
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035-1000, USA
David W. Deamer
Affiliation:
Jack Baskin School of Engineering, University of California, Santa Cruz 95064-1077, USA
Christopher P. McKay
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035-1000, USA
Kensei Kobayashi
Affiliation:
Department of Chemistry and Biotechnology, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan e-mail: kawai-jun-jy@ynu.ac.jp

Abstract

Titan, the largest satellite of Saturn, has a thick atmosphere containing nitrogen and methane. A variety of organic compounds have been detected in the atmosphere, most likely produced when atmospheric gases are exposed to ultraviolet light, electrons captured by the magnetosphere of Saturn and cosmic rays. The Cassini/Huygens probe showed that the average temperature on the surface of Titan is 93.7 K, with lakes of liquid ethane and methane. Sub-surface mixtures of liquid ammonia and water may also be present. We have synthesized complex organic compounds (tholins) by exposing a mixture of nitrogen and methane to plasma discharges, and investigated their interactions with several different liquids that simulate Titan's liquidosphere. We found that coacervates formed when tholins were extracted in non-polar solvents followed by exposure to aqueous ammonia solutions. The results suggest that coacervates can self-assemble in Titan's liquidosphere which have the potential to undergo further chemical evolution. Similar processes are likely to occur in the early evolution of habitable planets when tholin-like compounds undergo phase separation into microscopic structures dispersed in a suitable aqueous environment.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anders, E. & Grevesse, N. (1989). Geochem. Cosmochim. Acta 53, 197214.CrossRefGoogle Scholar
Anders, E., Hayatsu, R. & Studier, M.H. (1973). Science 182, 781790.CrossRefGoogle Scholar
Apel, C.L., Deamer, D.W. & Mautner, M.N. (2002). Biochem. Biophys. Acta 1559, 19.CrossRefGoogle Scholar
Brown, R.H., Soderblom, L.A., Soderblom, J.M., Clark, R.N., Jaumann, R., Barnes, J.W., Sotin, C., Buratti, B., Baines, K.H. & Nicholson, P.D. (2008). Nature 454, 607610.CrossRefGoogle Scholar
Carrasco, N. et al. (2009). J. Phys. Chem. A 113, 11 19511 203.CrossRefGoogle Scholar
Coll, P., Coscia, D., Smith, N., Gazeau, M.C., Ramõrez, S.I., Cernogor, G., Israel, G. & Raulin, F. (1999). Planet. Space Sci. 47, 13311340.CrossRefGoogle Scholar
Deamer, D.W. & Pashley, P.M. (1989). Orig. Life Evol. Biosph. 19, 2138.CrossRefGoogle Scholar
Ehrenfreund, P., Boon, J.J., Commandeur, J., Sagan, C., Thompson, W.R. & Khare, B.N. (1995). Atfv. Space Res. 15(3), 335342.CrossRefGoogle Scholar
Egami, F. (1974). J. Mol. Evol. 4(2), 113120.CrossRefGoogle Scholar
Engel, S., Lunine, J.I. & Norton, D.L. (1994). J. Geophys. 99, 37453752.CrossRefGoogle Scholar
Fortes, A.D. (2000). Icarus 146, 444452.CrossRefGoogle Scholar
Fox, S.W., Harada, K., Woods, K.R. & Windsor, C.R. (1963). Arch. Biochem. 102(3), 439445.CrossRefGoogle Scholar
Fulchignoni, M. et al. (2005). Nature 438, 785791.CrossRefGoogle Scholar
Grasset, O., Sotin, C. & Deschamps, F. (2000). Planet. Space Sci. 48, 617636.CrossRefGoogle Scholar
Griffith, C.A., Lora, J.M., Turner, J., Penteado, P.F., Brown, R.H., Tomasko, M.G., Doose, L. & See, C. (2012). Nature 237, 486.Google Scholar
Hanel, R. et al. (1981). Science 212, 192200.CrossRefGoogle Scholar
He, C., Lin, G., Upton, K.T., Imanaka, H., Mark, A. & Smith, M.A. (2012a). J. Phys. Chem. 116, 47514759.CrossRefGoogle Scholar
He, C., Lin, G., Upton, K.T., Imanaka, H., Mark, A. & Smith, M.A. (2012b). J. Phys. Chem. 116, 47604767.CrossRefGoogle Scholar
Hodyss, R., McDonald, G., Sarker, N., Smith, M.A., Beauchamp, P.M. & Beauchamp, J.L. (2004). Icarus 171, 525530.CrossRefGoogle Scholar
Horst, S.M. et al. (2012). Astrobiology 12, 9.CrossRefGoogle Scholar
Imanaka, H., Khare, B.N., Elsila, J.E., Bakes, E.L.O., McKay, C.P., Cruikshank, D.P., Sugita, S., Matsui, T. & Zare, R.N. (2004). Icarus 168, 344366.CrossRefGoogle Scholar
Israel, G. et al. (2005). Nature 438, 796799.CrossRefGoogle Scholar
Jones, T.D. & Lewis, J.S. (1987). Icarus 72, 381398.CrossRefGoogle Scholar
Kawai, J., Jagota, S., Kaneko, T., Obayashi, Y., Yoshimura, Y., Khare, B.N., Deamer, D.W., McKay, C.P. & Kobayashi, K. (2013). Int. J. Astrobiol. 12.CrossRefGoogle Scholar
Khare, B.N., Sagan, C., Ogino, H., Nagy, B., Er, C., Schram, K.H. & Arakawa, E.T. (1986). Icarus 68, 176184.CrossRefGoogle Scholar
Krauskopf, K.B. & Bird, D.K. (1995). Introduction to Geochemistry, 3rd edn. McGraw-Hill, New York.Google Scholar
Kunde, V.G., Aikin, A.C., Hanel, R.A., Jennings, D.E., Maguire, W.C. & Samuelson, R.E. (1981). Nature 292, 686688.CrossRefGoogle Scholar
Lindal, G.F., Wood, G.E., Hotz, H.B., Sweetnam, D.N., Eshelman, V.R. & Tyler, G.L. (1983). Icarus 32, 413430.Google Scholar
Lorenz, R.D. (1994). Planet. Space Sci. 42(1), l4.CrossRefGoogle Scholar
Lunine, J.I. & Atreya, S.K. (2008). Nat. Geosci. 1, 159164.CrossRefGoogle Scholar
Maguire, W.C., Hanel, R.A., Jennings, D.E., Kunde, V.G. & Samuelson, R.E. (1981). Nature 292, 683686.CrossRefGoogle Scholar
McGuigan, M., Waite, J.H., Imanaka, H. & Sacks, R.D. (2006). J. Chromatogr. A 1132, 280288.CrossRefGoogle Scholar
McKay, C.P. (1996). Space Sci. 44, 741747.CrossRefGoogle Scholar
Nguyen, M.-J., Raulin, F., Coll, P., Derenne, S., Szopa, C., Cernogora, G., Israe, G. & Bernard, J.-M. (2008). Adv. Space Res. 42, 4853.CrossRefGoogle Scholar
Neish, C.D., Somogyi, Á., Imanaka, H., Lunine, J.I. & Smith, M.A. (2008). Astrobiology 8(2), 273287.CrossRefGoogle Scholar
Neish, C.D., Somogyi, Á., Lunine, J.I. & Smith, M.A. (2009). Icarus 201, 412421.CrossRefGoogle Scholar
Neish, C.D., Somogyi, Á., Lunine, J.I. & Smith, M.A. (2010). Astrobiology 10(3), 337347.CrossRefGoogle Scholar
Nelson, R.M. et al. (2009). Icarus 199, 429441.CrossRefGoogle Scholar
O'Brien, D.P., Lorenz, R.D. & Lunine, J.I. (2005). Icarus 173, 243253.CrossRefGoogle Scholar
Oparin, A.I. (1957). Origins of life on Earth, pp. 495. Oliver and Boyd, Edinburgh.Google Scholar
Oparin, A.I., Orlovskii, A.F., Bukhlaeva, V.I.A. & Gladilin, K.L. (1976). Dokl. Akad. Nauk SSSR 226, 972974.Google Scholar
Riddick, J.A. & Bunger, W.B. (1970). Techniques of Chemistry Volume II, Organic Solvents Physical Properties and Method of Purification, 3rd edn. Wiley-Interscience, New York.Google Scholar
Sagan, C. & Khare, B.N. (1979). Nature 277, 102107.CrossRefGoogle Scholar
Sagan, C., Khare, B.N., Thompson, W.R., McDonald, G.D., Wing, M.R., Bada, J.L., Vo-Dihn, T. & Rakawa, E.T. (1993). Astrophys. J. 414, 399405.CrossRefGoogle Scholar
Samuelson, R.E., Hanel, R.A., Kunde, V.G. & Maguire, W.C. (1981). Nature 292, 688693.CrossRefGoogle Scholar
Sarker, N., Somogy, A., Lunine, J.I. & Smith, M.A. (2003). Astrobiology 3, 719726.CrossRefGoogle Scholar
Schulze-Makuch, D., Haque, S., de Sousa Anto, M.R., Hosein, R., Song, Y.C., Yang, J., Zaikova, E., Guinan, D.E., Lehto, H.J. & Hallam, S.J. (2011). Astrobiology 11(3), 241258.CrossRefGoogle Scholar
Smith, J.K. & Kaplan, J.R. (1970). Science 167(3923), 13671370.CrossRefGoogle Scholar
Somogyi, A., Oh, C., Smith, M.A. & Lunine, J.I. (2005). J. Am. Soc. Mass Spectrom 16, 850859.CrossRefGoogle Scholar
Stofan, E.R. et al. (2007). Nature 445, 6164.CrossRefGoogle Scholar
Studier, M.H., Hayatsu, R. & Anders, E. (1968). Geochim. Cosmochim. Acta 32(2), 151173.CrossRefGoogle Scholar
Szopa, C., Cernogora, G., Boufendi, L., Correia, J.-J. & Coll, P. (2006). Planet. Space Sci. 54(4), 394404.CrossRefGoogle Scholar
Takai, K., Moser, D.P., Onstott, T.C., Spoelstra, N., Pfiffner, S.M., Dohnalkova, A. & Fredrickson, J.K. (2001). Int. J. Syst. Evol. Microbiol. 51, 12451256.CrossRefGoogle Scholar
Tobie, G., Grasset, O., Lunine, J.I., Mocquet, A. & Sotin, C. (2005). Icarus 175, 496502.CrossRefGoogle Scholar
Trainer, M.G., Pavlov, A.A., DeWitt, H.L., Jimenez, J.L., McKay, C.P., Toon, O.B. & Tolbert, M.A. (2006). PNAS 103(48), 1803518042.CrossRefGoogle Scholar
Wilson, E.H. & Atreya, S.K. (2003). Planet. Space Sci. 51, 10171033.CrossRefGoogle Scholar
Yanagawa, H. & Egami, F. (1980). Origin of life. In Proc. 3rd ISSOL Meeting and 6th ICOL Meeting, Jerusalem, Israel, 22–27 June, 1980.Google Scholar
Yung, Y.L., Allen, M. & Pinto, J.P. (1984). Astrophys. J. Suppl. 292, 683686.CrossRefGoogle Scholar
7
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Self-assembly of tholins in environments simulating Titan liquidospheres: implications for formation of primitive coacervates on Titan
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Self-assembly of tholins in environments simulating Titan liquidospheres: implications for formation of primitive coacervates on Titan
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Self-assembly of tholins in environments simulating Titan liquidospheres: implications for formation of primitive coacervates on Titan
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *