Skip to main content Accessibility help




For any central simple algebra over a field F which contains a maximal subfield M with non-trivial automorphism group G = AutF(M), G is solvable if and only if the algebra contains a finite chain of subalgebras which are generalized cyclic algebras over their centers (field extensions of F) satisfying certain conditions. These subalgebras are related to a normal subseries of G. A crossed product algebra F is hence solvable if and only if it can be constructed out of such a finite chain of subalgebras. This result was stated for division crossed product algebras by Petit and overlaps with a similar result by Albert which, however, was not explicitly stated in these terms. In particular, every solvable crossed product division algebra is a generalized cyclic algebra over F.



Hide All
1.Albert, A. A., Structure of algebras. Revised printing. American Mathematical Society Colloquium Publications, vol. XXIV (American Mathematical Society, Providence, RI, 1961).
2.Amitsur, A. S., Non-commutative cyclic fields, Duke Math. J. 21 (1954), 87105.
3.Amitsur, A. S. and Saltman, D. J., Generic abelian crossed products and p-algebras, J. Alg. 51 (1978), 7687.
4.Berhuy, G. and Oggier, F., An introduction to central simple algebras and their applications to wireless communication, in Mathematical surveys and monographs, 191 (American Mathematical Society, Providence, RI, 2013), viii+276 pp.
5.Brown, C., Petit algebras and their automophisms, PhD Thesis (University of Nottingham, Nottingham, UK, 2018). arXiv:1806.00822v1 [math.RA]
6.Hanke, T., A direct approach to noncrossed product division algebras, PhD Thesis (Universität Potsdam, Potsdam, Germany, 2011). arXiv:1109.1580v1 [math.RA]
7.Jacobson, N., Finite-dimensional division algebras over fields (Springer Verlag, Berlin, Heidelberg, New York, 1996).
8.Keshavarzipour, T. and Mahdavi-Hezavehi, M., Crossed product conditions for central simple algebras in terms of irreducible subgroups, J. Algebra 315(2) (2007), 738744.
9.Kiani, D. and Mahdavi-Hezavehi, M., Crossed product conditions for division algebras of prime power degree, J. Alg. 283 (2005), 222231.
10.Kursov, V. V. and Yanchevskii, V. I., Crossed products of simple algebras and their automorphism groups, Amer. Math. Soc. Transl. 154(2) (1992), 7580.
11.Motiee, M., A note on the existence of cyclic algebras in division algebras, Comm. Alg. 45(10) (2017), 43964399.
12.Petit, J.-C., Sur certains quasi-corps généralisant un type d’anneau-quotient, Séminaire Dubriel. Algèbre et théorie des nombres 20 (1966–1967), 118.
13.Petit, J.-C., Sur les quasi-corps distributifes à base momogène, C. R. Acad. Sc. Paris, Série A 266 (1968), 402404.
14.Pumplün, S., Finite nonassociative algebras obtained from skew polynomials and possible applications to (f, σ, σ) -codes, Adv. Math. Commun. 11(3) (2017), 615634.
15.Schacher, M. M., Subfields of division rings, I, J. Algebra 9(4) (1968), 451477.
16.Sonn, J., ℚ-admissibility of solvable groups, J. Algebra 84(2) (1983), 411419.
17.Teichmüller, O., Über die sogenannte nichtkommutative Galoissche Theorie und die Relation ξλ, μ, νξλ, μν, πε, λμ, ν, π = πε, λμ, ν, π (German) Deutsche Math. 5 (1940), 138149.
18.Tignol, J.-P., Generalized crossed products, in Séminaire Mathématique (nouvelle série), vol. 106 (Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 1987).


Related content

Powered by UNSILO




Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.