Skip to main content Accessibility help


  • A. BALLESTER-BOLINCHES (a1), J. C. BEIDLEMAN (a2), A. D. FELDMAN (a3) and M. F. RAGLAND (a4)


For a formation $\mathfrak F$ , a subgroup M of a finite group G is said to be $\mathfrak F$ -pronormal in G if for each g ∈ G, there exists x ∈ 〈U,Ug $\mathfrak F$ such that Ux = Ug. Let f be a subgroup embedding functor such that f(G) contains the set of normal subgroups of G and is contained in the set of Sylow-permutable subgroups of G for every finite group G. Given such an f, let fT denote the class of finite groups in which f(G) is the set of subnormal subgroups of G; this is the class of all finite groups G in which to be in f(G) is a transitive relation in G. A subgroup M of a finite group G is said to be $\mathfrak F$ -normal in G if G/CoreG(M) belongs to $\mathfrak F$ . A subgroup U of a finite group G is called K- $\mathfrak F$ -subnormal in G if either U = G or there exist subgroups U = U0U1 ≤ . . . ≤ Un = G such that Ui–1 is either normal or $\mathfrak F$ -normal in Ui, for i = 1,2, …, n. We call a finite group G an $fT_{\mathfrak F}$ -group if every K- $\mathfrak F$ -subnormal subgroup of G is in f(G). In this paper, we analyse for certain formations $\mathfrak F$ the structure of $fT_{\mathfrak F}$ -groups. We pay special attention to the $\mathfrak F$ -pronormal subgroups in this analysis.



Hide All
1.Ballester-Bolinches, A., Beidleman, J. C., Feldman, A. D. and Ragland, M. F., On generalised subnormal subgroups of finite groups, Math. Nachr. 286 (11–12) (2013), 10661071.
2.Ballester-Bolinches, A., Esteban-Romero, R. and Asaad, M., Products of finite groups, De Gruyter Expositions in Mathematics, vol. 53 (Springer, Berlin, Germany, 2010) 584 pp.
3.Ballester-Bolinches, A. and Ezquerro, L. M., Classes of finite groups, Mathematics and Its Applications (Springer, Berlin, Germany, 2006), 584 pp.
4.Ballester-Bolinches, A., Feldman, A. D., Pedraza-Aguilera, M. C. and Ragland, M. F., A class of generalised finite T-groups, J. Algebra 333 (1) (2011), 128138.
5.Ballester-Bolinches, A. and Pérez-Ramos, M. D., On $\mathfrak F$-subnormal subgroups and Frattini-like subgroups of a finite group, Glasgow Math. J. 36 (1994), 241247.
6.Beidleman, J. C. and Heineken, H., Finite soluble groups whose subnormal subgroups permute with certain classes of subgroups, J. Group Theory 6 (2003), 139158.
7.Bryce, R. A. and Cossey, J., The Wielandt subgroup of a finite soluble group, J. London Math. Soc. 40 (1989), 244256.
8.Doerk, K. and Hawkes, T., Finite soluble groups (De Gruyter, Berlin, Germany, 1992).
9.Feldman, A., $\mathfrak F$-Bases and subgroup embedding in finite solvable groups, Arch. Math. 47 (1986), 481492.
10.Feldman, A. D., t-groups and their generalizations, Group theory (Granville, OH, 1992) (World Sci. Publ., River Edge, NJ, 1993), 128133.
11.Müller, N., $\mathfrak F$-pronormale untergruppen endlich auflösbarer gruppen. (Johannes Gutenberg-Universität Mainz, Diplomarbeit, 1985).
12.Peng, T. A., Finite groups with pro-normal subgroups, Proc. Amer. Math. Soc. 20 (1969), 232234.
13.Robinson, D. J. S.A note on finite groups in which normality is transitive, Proc. Amer. Math. Soc. 19 (1968), 933937.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed