Skip to main content Accessibility help
×
×
Home

THE LOWER RANK OF DIRECT PRODUCTS OF HEREDITARILY JUST INFINITE GROUPS

  • BENJAMIN KLOPSCH (a1) and MATTEO VANNACCI (a1)

Abstract

We determine the lower rank of the direct product of finitely many hereditarily just infinite profinite groups of finite lower rank.

Copyright

References

Hide All
1. Barnea, Y., Generators of simple Lie algebras and the lower rank of some pro-p-groups, Comm. Algebra 30 (3) (2002), 12931303.
2. Dixon, J. D., du Sautoy, M. P. F., Mann, A. and Segal, D., Analytic pro-p groups, Cambridge Studies in Advanced Mathematics, vol. 61 (Cambridge University Press, Cambridge, 1999).
3. Ershov, M. and Jaikin-Zapirain, A., Groups of positive weighted deficiency and their applications, J. Reine Angew. Math. 677 (2013), 71134.
4. Klaas, G., Leedham-Green, C. R. and Plesken, W., Linear pro-p-groups of finite width, Lecture Notes in Mathematics, vol. 1674 (Springer-Verlag, Berlin, 1997).
5. Kuranishi, M., On everywhere dense imbedding of free groups in Lie groups, Nagoya Math. J. 2 (1951), 6371.
6. Lazard, M., Groupes analytiques p-adiques, Inst. Hautes Études Sci. Publ. Math. 26 (1965), 389603.
7. Lubotzky, A. and Mann, A., Powerful p-groups. II. p-adic analytic groups, J. Algebra 105 (2) (1987), 506515.
8. Lubotzky, A. and Shalev, A., On some Λ-analytic pro-p groups, Israel J. Math. 85 (1–3) (1994), 307337.
9. Reid, C. D., On the structure of just infinite profinite groups, J. Algebra 324 (9) (2010), 22492261.
10. Vannacci, M., On hereditarily just infinite profinite groups obtained via iterated wreath products, J. Group Theory 19 (2) (2016), 233238.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

MSC classification

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed