Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-s5ss2 Total loading time: 0.283 Render date: 2021-02-26T08:06:21.058Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

COHERENT POWER SERIES RING AND WEAK GORENSTEIN GLOBAL DIMENSION

Published online by Cambridge University Press:  25 February 2013

NAJIB MAHDOU
Affiliation:
Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco e-mail: mahdou@hotmail.com
MOHAMMED TAMEKKANTE
Affiliation:
Department of Mathematics, Faculty of Science, Box 1014, University Mohammed V-Agdal Rabat, Morocco e-mail: tamekkante@yahoo.fr
SIAMAK YASSEMI
Affiliation:
Department of Mathematics, University of Tehran, and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran e-mail: yassemi@ipm.ir
Corresponding
Rights & Permissions[Opens in a new window]

Abstract

In this paper we compute the weak Gorenstein global dimension of a coherent power series ring. It is shown that the weak Gorenstein global dimension of R[[x]] is equal to the weak Gorenstein global dimension of R plus one, provided R[[x]] is coherent.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2013 

References

1.Auslander, M. and Bridger, M., Stable module theory, Memoirs of the American Mathematical Society, No. 94 (American Mathematical Society, Providence, RI, 1969).Google Scholar
2.Bazzoni, S. and Glaz, S., Gaussian properties of total rings of quotients, J. Algebra 310 (1) (2007), 180193.CrossRefGoogle Scholar
3.Bennis, D. and Mahdou, N., First, second, and third change of ring theorems for Gorenstein homological dimensions, Comm. Algebra 38 (10) (2010), 38373850CrossRefGoogle Scholar
4.Bennis, D. and Mahdou, N., Global Gorenstein dimensions, Proc. Amer. Math. Soc. 138 (2) (2010), 461465.CrossRefGoogle Scholar
5.Chen, J. and Ding, N., Coherent rings with finite self-FP-injective dimension, Comm. Algebra 24 (9) (1996), 29632980.Google Scholar
6.Enochs, E. and Jenda, O., On Gorenstein injective modules, Comm. Algebra 21 (1993), 34893501.CrossRefGoogle Scholar
7.Enochs, E. and Jenda, O., Gorenstein injective and projective modules, Math. Z. 220 (1995), 611633.CrossRefGoogle Scholar
8.Enochs, E., Jenda, O. and Torrecillas, B., Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), 19.Google Scholar
9.Glaz, S., Commutative coherent rings, Lecture Notes in Mathematics, vol. 1371 (Springer-Verlag, Berlin, Germany, 1989).CrossRefGoogle Scholar
10.Holm, H., Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), 167193.CrossRefGoogle Scholar
11.Jøndrup, S. and Small, L. W., Power series over coherent rings, Math. Scand. 35 (1974), 2124.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 68 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

COHERENT POWER SERIES RING AND WEAK GORENSTEIN GLOBAL DIMENSION
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

COHERENT POWER SERIES RING AND WEAK GORENSTEIN GLOBAL DIMENSION
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

COHERENT POWER SERIES RING AND WEAK GORENSTEIN GLOBAL DIMENSION
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *