Skip to main content Accessibility help
×
Home

U–Pb dating of calcite in ancient carbonates for age estimates of syn- to post-depositional processes: a case study from the upper Ediacaran strata of Finnmark, Arctic Norway

  • Guido Meinhold (a1) (a2), Nick M. W. Roberts (a3), Arzu Arslan (a1), Sören Jensen (a4), Jan Ove R. Ebbestad (a5), Anette E. S. Högström (a6), Magne Høyberget (a7), Heda Agić (a8), Teodoro Palacios (a4) and Wendy L. Taylor (a9)...

Abstract

Results of in situ U–Pb dating of calcite spherulites, cone-in-cone (CIC) calcite and calcite fibres from a calcareous concretion of the upper Ediacaran of Finnmark, Arctic Norway, are reported. Calcite spherulites from the innermost layers of the concretion yielded a lower intercept age of 563 ± 70 Ma, which, although imprecise, is within uncertainty of the age of sedimentation based on fossil assemblages. Non-deformed CIC calcite from the bottom part of the concretion yielded an age of 475 ± 25 Ma, which is interpreted as the age of CIC calcite formation during a period of fluid overpressure induced during burial of the sediments. Deformed CIC calcite from the top part of the concretion yielded an age of 418 ± 23 Ma, which overlaps with a known Caledonian tectono-metamorphic event, and indicates a potential post-depositional overprint at this time. Calcite fibres that grew in small fissures along spherulite rims, which are interpreted as a recrystallization feature during deformation and formation of a cleavage, gave an imprecise age of 486 ± 161 Ma. Our results show that U–Pb dating of calcite can provide age constraints for ancient carbonates and syn- to post-depositional processes that operated during burial and metamorphic overprinting.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      U–Pb dating of calcite in ancient carbonates for age estimates of syn- to post-depositional processes: a case study from the upper Ediacaran strata of Finnmark, Arctic Norway
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      U–Pb dating of calcite in ancient carbonates for age estimates of syn- to post-depositional processes: a case study from the upper Ediacaran strata of Finnmark, Arctic Norway
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      U–Pb dating of calcite in ancient carbonates for age estimates of syn- to post-depositional processes: a case study from the upper Ediacaran strata of Finnmark, Arctic Norway
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Guido Meinhold, Email: g.meinhold@keele.ac.uk

References

Hide All
Cherniak, DJ (1997) An experimental study of strontium and lead diffusion in calcite, and implications for carbonate diagenesis and metamorphism. Geochimica et Cosmochimica Acta 61, 4173–79.
Drost, K, Chew, D, Petrus, JA, Scholze, F, Woodhead, JD, Schneider, JW and Harper, DAT (2019) An image mapping approach to U-Pb LA-ICP-MS carbonate dating and applications to direct dating of carbonate sedimentation. Geochemistry, Geophysics, Geosystems 19, 4631–48.
Farmer, J, Vidal, G, Moczydłowska, M, Strauss, H, Ahlberg, P and Siedlecka, A (1992) Ediacaran fossils from the Innerelv Member (late Proterozoic) of the Tanafjorden area, northeastern Finnmark. Geological Magazine 129, 181–95.
Godeau, N, Deschamps, P, Guihou, A, Leonide, P, Tendil, A, Gerdes, A, Hamelin, B and Girard, JP (2018) U–Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: Case of the Urgonian Limestone, France. Geology 46, 247–50.
Goodfellow, BW, Viola, G, Bingen, B, Nuriel, P and Kylander-Clark, ARC (2017) Palaeocene faulting in SE Sweden from U–Pb dating of slickenfibre calcite. Terra Nova 29, 321–28.
Hill, CA, Polyak, VJ, Asmerom, Y and Provencio, P (2016) Constraints on a Late Cretaceous uplift, denudation, and incision of the Grand Canyon region, southwestern Colorado Plateau, USA, from U-Pb dating of lacustrine limestone. Tectonics 35, 896906.
Högström, AES, Jensen, S, Palacios, T and Ebbestad, JOR (2013) New information on the Ediacaran–Cambrian transition in the Vestertana Group, Finnmark, northern Norway, from trace fossils and organic-walled microfossils. Norwegian Journal of Geology 93, 95106.
Holdsworth, RE, McCaffrey, KJW, Dempsey, E, Roberts, NMW, Hardman, K, Morton, A, Feely, M, Hunt, J, Conway, A and Robertson, A (2019) Natural fracture propping and earthquake-induced oil migration in fractured basement reservoirs. Geology 47(8), 691–4, doi: 10.1130/G46280.1.
Horstwood, MSA, Košler, J, Gehrels, G, Jackson, SE, McLean, NM, Paton, C, Pearson, NJ, Sircombe, K, Sylvester, P, Vermeesch, P and Bowring, JF (2016) Community-derived standards for LA-ICP-MS U–(Th–)Pb geochronology – Uncertainty propagation, age interpretation and data reporting. Geostandards and Geoanalytical Research 40, 311–32.
Israelson, C, Halliday, AN and Buchardt, B (1996) U–Pb dating of calcite concretions from Cambrian black shales and the Phanerozoic time scale. Earth and Planetary Science Letters 141, 153–9.
Jensen, S, Högström, AES, Almond, J, Taylor, WL, Meinhold, G, Høyberget, M, Ebbestad, JOR, Agić, H and Palacios, T (2018a) Scratch circles from the Ediacaran and Cambrian of Arctic Norway and the Republic of South Africa, with a review of scratch circle occurrences. Bulletin of Geosciences 93, 287304.
Jensen, S, Högström, AES, Høyberget, M, Meinhold, G, McIlroy, D, Ebbestad, JOR, Taylor, WL, Agić, H and Palacios, T (2018b) New occurrences of Palaeopascichnus from the Stáhpogieddi Formation, Arctic Norway, and their bearing on the age of the Varanger Ice Age. Canadian Journal of Earth Sciences 55, 1253–61.
Langmuir, D (1978) Uranium solution-mineral equilibria at low temperatures with application to sedimentary ore deposits. Geochimica et Cosmochimica Acta 42, 547–69.
Ludwig, K (2012) User’s Manual for Isoplot. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication no. 4, 170.
McIlroy, D and Brasier, MD (2017) Ichnological evidence for the Cambrian explosion in the Ediacaran to Cambrian succession of Tanafjord, Finnmark, northern Norway. In Earth System Evolution and Early Life: a Celebration of the Work of Martin Brasier (eds Brasier, AT, McIlroy, D and McLoughlin, N), pp. 351–68. Geological Society of London, Special Publication no. 488.
Meert, JG (2014) Ediacaran-Ordovician paleomagnetism of Baltica: a review. Gondwana Research 25, 159–69.
Meinhold, G, Jensen, S, Høyberget, M, Arslan, A, Ebbestad, JOR, Högström, AES, Palacios, T, Agić, H and Taylor, WL (2019a) First record of carbonates with spherulites and cone-in-cone structures from the Precambrian of Arctic Norway, and their palaeoenvironmental significance. Precambrian Research 328, 99110.
Meinhold, G, Wemmer, K, Högström, AES, Ebbestad, JOR, Jensen, S, Palacios, T, Høyberget, M, Agić, H and Taylor, WL (2019b) A late Caledonian tectono-thermal event in the Gaissa Nappe Complex, Arctic Norway: fine-fraction K–Ar evidence from the Digermulen Peninsula. GFF 141, 289–94.
Nuriel, P, Weinberger, R, Kylander-Clark, ARC, Hacker, BR and Craddock, JP (2017) The onset of the Dead Sea transform based on calcite age-strain analyses. Geology 45, 587–90.
Parrish, RR, Parrish, CM and Lasalle, S (2018) Vein calcite dating reveals Pyrenean orogen as cause of Paleogene deformation in southern England. Journal of the Geological Society 175, 425–42.
Pisapia, C, Deschamps, P, Battani, A, Buschaert, S, Guihou, A, Hamelin, B and Brulhet, J (2018) U/Pb dating of geodic calcite: new insights on Western Europe major tectonic events and associated diagenetic fluids. Journal of the Geological Society 175, 6070.
Rasbury, ET and Cole, JM (2009) Directly dating geologic events: U-Pb dating of carbonates. Reviews of Geophysics 47, RG3001, doi: 10.1029/2007RG000246.
Roberts, NMW, Drost, K, Horstwood, MSA, Condon, DJ, Chew, D, Drake, H, Milodowski, AE, McLean, NM, Smye, AJ, Walker, RJ, Haslam, R, Hodson, K, Imber, J, Beaudoin, N and Lee, JK (2020) Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb carbonate geochronology: strategies, progress, and limitations. Geochronology 2, 3361.
Roberts, NMW, Rasbury, ET, Parrish, R, Smith, CJ, Horstwood, MSA and Condon, DJ (2017) A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochemistry, Geophysics, Geosystems 18, 2807–14.
Roberts, NMW and Walker, RJ (2016) U-Pb geochronology of calcite mineralized faults; absolute dating of rift-related fault events on the northeast Atlantic margin. Geology 44, 531–34.
Siedlecka, A, Reading, HG, Williams, GD and Roberts, D (2006) Langfjorden, preliminary bedrock geology map 2236 II, scale 1:50000. Trondheim: Norges Geologiske Undersøkelse.
Woodhead, JD and Hergt, JM (2001) Strontium, neodymium and lead isotope analyses of NIST glass certified reference materials: SRM 610, 612, 614. Geostandards Newsletter 25, 261–6.
Yokoyama, T, Kimura, J, Mitsuguchi, T, Danhara, T, Hirata, T, Sakata, S, Iwano, H, Maruyama, S, Chang, Q, Miyazaki, T, Murakami, H and Saito-Kokubu, Y (2018) U-Pb dating of calcite using LA-ICP-MS: Instrumental setup for non-matrix-matched age dating and determination of analytical areas using elemental imaging. Geochemical Journal 52, doi: 10.2343/geochemj.2.0541.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Meinhold et al. Supplementary Materials
Meinhold et al. Supplementary Materials

 Unknown (840 KB)
840 KB

U–Pb dating of calcite in ancient carbonates for age estimates of syn- to post-depositional processes: a case study from the upper Ediacaran strata of Finnmark, Arctic Norway

  • Guido Meinhold (a1) (a2), Nick M. W. Roberts (a3), Arzu Arslan (a1), Sören Jensen (a4), Jan Ove R. Ebbestad (a5), Anette E. S. Högström (a6), Magne Høyberget (a7), Heda Agić (a8), Teodoro Palacios (a4) and Wendy L. Taylor (a9)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.