[1]Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J. and Miltersen, P. B., ‘On the complexity of numerical analysis’, SIAM J. Comput. 38(5) (2008/09), 1987–2006.
[2]Beltrán, C. and Pardo, L. M., ‘Smale’s 17th problem: average polynomial time to compute affine and projective solutions’, J. Amer. Math. Soc. 22(2) (2009), 363–385.
[3]Beltrán, C. and Pardo, L. M., ‘Fast linear homotopy to find approximate zeros of polynomial systems’, Found. Comput. Math. 11(1) (2011), 95–129.
[4]Blum, L., ‘Lectures on a theory of computation and complexity over the reals (or an arbitrary ring)’, in: Lectures in the Sciences of Complexity II (ed. Jen, E.) (Addison-Wesley, Redwood City, CA, 1990), 1–47.
[5]Blum, L., Cucker, F., Shub, M. and Smale, S., Complexity and Real Computation (Springer, New York, 1998).
[6]Blum, L., Shub, M. and Smale, S., ‘On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines’, Bull. Amer. Math. Soc. 21 (1989), 1–46.
[7]Braverman, M. and Cook, S., ‘Computing over the reals: foundations for scientific computing’, Notices Amer. Math. Soc. 53(3) (2006), 318–329.
[8]Bürgisser, P. and Cucker, F., ‘Exotic quantifiers, complexity classes, and complete problems’, Found. Comput. Math. 9 (2009), 135–170.
[9]Bürgisser, P. and Cucker, F., ‘On a problem posed by Steve Smale’, Ann. Math. 174 (2011), 1785–1836.
[10]Bürgisser, P. and Cucker, F., Condition, Grundlehren der mathematischen Wissenschaften, Vol. 349, (Springer, Berlin, 2013).
[11]Bürgisser, P., Cucker, F. and Lotz, M., ‘Coverage processes on spheres and condition numbers for linear programming’, Ann. Probab. 38 (2010), 570–604.
[12]Cheung, D. and Cucker, F., ‘A new condition number for linear programming’, Math. Program. 91 (2001), 163–174.
[13]Cheung, D., Cucker, F. and Ye, Y., ‘Linear programming and condition numbers under the real number computation model’, in: Handbook of Numerical Analysis, Vol. XI (eds. Ciarlet, Ph. and Cucker, F.) (North-Holland, Amsterdam, 2003), 141–207.
[14]Cobham, A., ‘The intrinsic computational difficulty of problems’, in: International Congress for Logic, Methodology, and the Philosophy of Science (ed. Bar-Hillel, Y.) (North-Holland, Amsterdam, 1964), 24–30.
[15]Cook, S., ‘The complexity of theorem proving procedures’, in: 3rd Annual ACM Symposium on the Theory of Computing (Assoc. Comput. Mach., New York, 1971), 151–158.
[16]Cook, S., ‘The P versus NP problem’, in: The Millennium Prize Problems (Clay Math. Inst., Cambridge, MA, 2006), 87–104.
[17]Cucker, F., ‘P_{ℝ}̸ = NC_{ℝ}’, J. Complexity 8 (1992), 230–238.
[18]Cucker, F. and Koiran, P., ‘Computing over the reals with addition and order: higher complexity classes’, J. Complexity 11 (1995), 358–376.
[19]Cucker, F., Krick, T., Malajovich, G. and Wschebor, M., ‘A numerical algorithm for zero counting. I. Complexity and accuracy’, J. Complexity 24 (2008), 582–605.
[20]Cucker, F., Krick, T., Malajovich, G. and Wschebor, M., ‘A numerical algorithm for zero counting. II. Distance to ill-posedness and smoothed analysis’, J. Fixed Point Theory Appl. 6 (2009), 285–294.
[21]Cucker, F. and Peña, J., ‘A primal-dual algorithm for solving polyhedral conic systems with a finite-precision machine’, SIAM J. Optim. 12 (2002), 522–554.
[22]Cucker, F. and Smale, S., ‘Complexity estimates depending on condition and round-off error’, J. ACM 46 (1999), 113–184.
[23]Cucker, F. and Torrecillas, A., ‘Two P-complete problems in the theory of the reals’, J. Complexity 8 (1992), 454–466.
[24]Demmel, J., ‘On condition numbers and the distance to the nearest ill-posed problem’, Numer. Math. 51 (1987), 251–289.
[25]Demmel, J. W., Applied Numerical Linear Algebra (SIAM, Philadelphia, PA, 1997).
[26]Eckart, C. and Young, G., ‘The approximation of one matrix by another of lower rank’, Psychometrika 1 (1936), 211–218.
[27]Edelman, A., ‘Eigenvalues and condition numbers of random matrices’, SIAM J. Matrix Anal. Appl. 9 (1988), 543–556.
[28]Edmonds, J., ‘Paths, trees, and flowers’, Canad. J. Math. 17 (1965), 449–467.
[29]Goffin, J.-L., ‘The relaxation method for solving systems of linear inequalities’, Math. Oper. Res. 5 (1980), 388–414.
[30]Goldreich, O., Computational Complexity (Cambridge University Press, Cambridge, 2008), A conceptual perspective.
[31]Hartmanis, J., Lewis, P. L. and Stearns, R. E., ‘Hierarchies of memory-limited computations’, in: 6th IEEE Symposium on Switching Circuit Theory and Logic Design (IEEE Comput. Soc., Long Beach, CA, 1965), 179–190.
[32]Hartmanis, J. and Stearns, R. E., ‘On the computational complexity of algorithms’, Trans. Amer. Math. Soc. 117 (1965), 285–306.
[33]Heintz, J., Roy, M.-F. and Solerno, P., ‘Sur la complexité du principe de Tarski–Seidenberg’, Bull. Soc. Math. France 118 (1990), 101–126.
[34]Hestenes, M. R. and Stiefel, E., ‘Methods of conjugate gradients for solving linear systems’, J. Research Nat. Bur. Standards 49(1953) (1952), 409–436.
[35]Higham, N., Accuracy and Stability of Numerical Algorithms (SIAM, Philadelphia, PA, 1996).
[36]Homer, S. and Selman, A. L., Computability and complexity theory, second edn, Texts in Computer Science, (Springer, New York, 2011).
[37]Karp, R. M., ‘Reducibility among combinatorial problems’, in: Complexity of Computer Computations (eds. Miller, R. and Thatcher, J.) (Plenum Press, 1972), 85–103.
[38]Ko, K.-I., Complexity Theory of Real Functions, Progress in Theoretical Computer Science, (Birkhäuser Boston, Inc., Boston, MA, 1991).
[39]Koiran, P., ‘Computing over the reals with addition and order’, Theor. Comput. Sci. 133 (1994), 35–47.
[40]Ladner, R. E., ‘The circuit value problem is log space complete for ℙ’, SIGACT News 7 (1975), 18–20.
[41]Levin, L., ‘Universal sequential search problems’, Probl. Pered. Inform. IX 3 (1973), 265–266. (in Russian), (English translation in Problems of Information Trans. 9, 3; corrected translation in [58]). [42]Miller, W., ‘Computational complexity and numerical stability’, SIAM J. Comput. 4 (1975), 97–107.
[43]Papadimitriou, C. H., Computational Complexity (Addison-Wesley, Redwood City, CA, 1994).
[44]Poizat, B., Les Petits Cailloux (Aléa, Paris, 1995).
[45]Renegar, J., ‘On the computational complexity and geometry of the first-order theory of the reals. Part I’, J. Symbolic Comput. 13 (1992), 255–299.
[46]Renegar, J., ‘Is it possible to know a problem instance is ill-posed?’, J. Complexity 10 (1994), 1–56.
[47]Renegar, J., ‘Some perturbation theory for linear programming’, Math. Program. 65 (1994), 73–91.
[48]Renegar, J., ‘Incorporating condition measures into the complexity theory of linear programming’, SIAM J. Optim. 5 (1995), 506–524.
[49]Renegar, J., ‘Linear programming, complexity theory and elementary functional analysis’, Math. Program. 70 (1995), 279–351.
[50]Shub, M. and Smale, S., ‘Complexity of Bézout’s Theorem I: geometric aspects’, J. Amer. Math. Soc. 6 (1993), 459–501.
[51]Shub, M. and Smale, S., ‘Complexity of Bézout’s Theorem II: volumes and probabilities’, in: Computational Algebraic Geometry, (eds. Eyssette, F. and Galligo, A.) Progress in Mathematics, Vol. 109 (Birkhäuser, Basel, 1993), 267–285.
[52]Shub, M. and Smale, S., ‘Complexity of Bézout’s Theorem III: condition number and packing’, J. Complexity 9 (1993), 4–14.
[53]Shub, M. and Smale, S., ‘Complexity of Bézout’s Theorem IV: probability of success; extensions’, SIAM J. Numer. Anal. 33 (1996), 128–148.
[54]Shub, M. and Smale, S., ‘Complexity of Bézout’s Theorem V: polynomial time’, Theor. Comput. Sci. 133 (1994), 141–164.
[55]Smale, S., ‘Some remarks on the foundations of numerical analysis’, SIAM Rev. 32 (1990), 211–220.
[56]Smale, S., ‘Complexity theory and numerical analysis’, in: Acta Numerica (ed. Iserles, A.) (Cambridge University Press, Cambridge, UK, 1997), 523–551.
[57]Smale, S., ‘Mathematical problems for the next century’, in: Mathematics: Frontiers and Perspectives (eds. Arnold, V., Atiyah, M., Lax, P. and Mazur, B.) (American Mathematical Society, Providence, RI, 2000), 271–294.
[58]Trakhtenbrot, B. A., ‘A survey of russian approaches to perebor (brute-force search) algorithms’, Ann. Hist. Comput. 6 (1984), 384–400.
[59]Turing, A. M., ‘Rounding-off errors in matrix processes’, Quart. J. Mech. Appl. Math. 1 (1948), 287–308.
[60]von Neumann, J. and Goldstine, H. H., ‘Numerical inverting matrices of high order’, Bull. Amer. Math. Soc. 53 (1947), 1021–1099.
[61]von Neumann, J. and Goldstine, H. H., ‘Numerical inverting matrices of high order, II’, Proc. Amer. Math. Soc. 2 (1951), 188–202.
[62]Weihrauch, K., Computable Analysis, Texts in Theoretical Computer Science. An EATCS Series, (Springer, Berlin, 2000).
[63]Wilkinson, J., ‘Some comments from a numerical analyst’, J. ACM 18 (1971), 137–147.