Skip to main content Accessibility help
×
Home

MOCK THETA FUNCTIONS AND QUANTUM MODULAR FORMS

  • AMANDA FOLSOM (a1), KEN ONO (a2) and ROBERT C. RHOADES (a3)

Abstract

Ramanujan’s last letter to Hardy concerns the asymptotic properties of modular forms and his ‘mock theta functions’. For the mock theta function $f(q)$ , Ramanujan claims that as $q$ approaches an even-order $2k$ root of unity, we have

$$\begin{eqnarray*}f(q)- (- 1)^{k} (1- q)(1- {q}^{3} )(1- {q}^{5} )\cdots (1- 2q+ 2{q}^{4} - \cdots )= O(1).\end{eqnarray*}$$
We prove Ramanujan’s claim as a special case of a more general result. The implied constants in Ramanujan’s claim are not mysterious. They arise in Zagier’s theory of ‘quantum modular forms’. We provide explicit closed expressions for these ‘radial limits’ as values of a ‘quantum’ $q$ -hypergeometric function which underlies a new relationship between Dyson’s rank mock theta function and the Andrews–Garvan crank modular form. Along these lines, we show that the Rogers–Fine false $\vartheta $ -functions, functions which have not been well understood within the theory of modular forms, specialize to quantum modular forms.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      MOCK THETA FUNCTIONS AND QUANTUM MODULAR FORMS
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      MOCK THETA FUNCTIONS AND QUANTUM MODULAR FORMS
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      MOCK THETA FUNCTIONS AND QUANTUM MODULAR FORMS
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .

References

Hide All
Andrews, G. E., ‘On the theorems of Watson and Dragonette for Ramanujan’s mock theta functions’, Amer. J. Math. 88 (1966), 454490.
Andrews, G. E., ‘Concave and convex compositions’, Ramanujan J., to appear.
Andrews, G. E. and Berndt, B. C., ‘Your hit parade – the top ten most fascinating formulas from Ramanujan’s lost notebook’, Notices Amer. Math. Soc. 55 (2008), 1830.
Andrews, G. E. and Berndt, B. C., Ramanujan’s Lost Notebook. Part II (Springer, New York, 2009).
Andrews, G. E. and Garvan, F., ‘Dyson’s crank of a partition’, Bull. Amer. Math. Soc. (N.S.) 18 (1988), 167171.
Andrews, G. E., Ono, K. and Urroz, J., ‘q-identities and values of certain L-functions’, Duke Math. J. 108 (2001), 395419.
Andrews, G. E., Rhoades, R. C. and Zwegers, S., ‘Modularity of the concave composition generating function’, Algebra Number Theory, (2013), accepted for publication.
Atkin, A. O. L. and Swinnerton-Dyer, H. P. F., ‘Some properties of partitions’, Proc. Lond. Math. Soc. 4 (1954), 84106.
Bajpai, J., Kimport, S., Liang, J., Ma, D. and Ricci, J., ‘Bilateral series and Ramanujan’s radial limits’, Proc. Amer. Math. Soc., (2013), accepted for publication.
Berndt, B. C., ‘Ramanujan, his lost notebook, its importance’, preprint.
Berndt, B. C. and Rankin, R. A., Ramanujan: Letters and Commentary (American Mathematical Society, Providence, 1995).
Bringmann, K. and Folsom, A., ‘On the asymptotic behavior of Kac–Wakimoto characters’, Proc. Amer. Math. Soc. 141(5) (2013), 15671576.
Bringmann, K., Folsom, A. and Rhoades, R. C., ‘Partial and mock theta functions as $q$-hypergeometric series’, in Ramanujan’s 125th Anniversary Special Volume, Ramanujan J. 29(1–3) (2012), 295310 (special issue).
Bringmann, K., Mahlburg, K. and Rhoades, R. C., ‘Taylor coefficients of mock-Jacobi forms and moments of partition statistics’, Math. Proc. Cambridge Philos. Soc., to appear.
Bringmann, K. and Ono, K., ‘The $f(q)$ mock theta function conjecture and partition ranks’, Invent. Math. 165 (2006), 243266.
Bringmann, K. and Ono, K., ‘Dyson’s ranks and Maass forms’, Ann. of Math. 171 (2010), 419449.
Bringmann, K., Ono, K. and Rhoades, R., ‘Eulerian series as modular forms’, J. Amer. Math. Soc. 21 (2008), 10851104.
Bruinier, J. H. and Funke, J., ‘On two geometric theta lifts’, Duke Math. J. 125 (2004), 4590.
Bryson, J., Ono, K., Pitman, S. and Rhoades, R. C., ‘Unimodal sequences and quantum and mock modular forms’, Proc. Natl. Acad. Sci. USA 109(40) (2012), 1606316067.
Choi, Y.-S., ‘The basic bilateral hypergeometric series and the mock theta functions’, Ramanujan J. 24 (2011), 345386.
Coogan, G. and Ono, K., ‘A $q$-series identity and the arithmetic of Hurwitz-zeta functions’, Proc. Amer. Math. Soc. 131 (2003), 719724.
Dragonette, L., ‘Some asymptotic formulae for the mock theta series of Ramanujan’, Trans. Amer. Math. Soc. 72 (1952), 474500.
Dyson, F., ‘Some guesses in the theory of partitions’, Eureka 8 (1944), 1015.
Fine, N. J., Basic Hypergeometric Series and Applications, Math. Surveys and Monographs, 27 (American Mathematical Society, Providence, 1988).
Folsom, A., ‘Mock modular forms and $d$-distinct partitions’, preprint.
Gasper, G. and Rahman, M., Basic Hypergeometric Series, Ency. Math. and App., 35 (Cambridge University Press, Cambridge, 1990).
Gordon, B. and McIntosh, R., ‘A survey of classical mock theta functions’, in Partitions, q-series and Mmodular Forms, Dev. Math., 23 (Springer, New York, 2012), 95144.
Griffin, M., Ono, K. and Rolen, L., ‘Ramanujan’s mock theta functions’, Proc. Natl. Acad. Sci., USA 110 (2013), 57655768.
Hikami, K., ‘Quantum invariant for torus link and modular forms’, Comm. Math. Phys. 246 (2004), 403426.
Kubert, D. S. and Lang, S., Modular Units (Springer, Berlin, 1981).
Lawrence, R. and Zagier, D., ‘Modular forms and quantum invariants of 3-manifolds’, Asian J. Math. 3 (1999), 93108.
Lovejoy, J. and Ono, K., ‘Hypergeometric generating functions for the values of Dirichlet and other $L$-functions’, Proc. Natl. Acad. Sci., USA 100 (2003), 69046909.
Mahlburg, K., ‘Partition congruences and the Andrews–Garvan–Dyson crank’, Proc. Natl. Acad. Sci. USA 105 (2005), 1537315376.
Mortenson, E. T., ‘On the dual nature of partial theta functions and Appell–Lerch sums’, preprint. arxiv:1208.6316.
Ono, K., ‘Unearthing the visions of a master: harmonic Maass forms and number theory’, Proc. 2008 Harvard-MIT Current Developments in Mathematics Conf., (2009), Somerville, Ma., 347–454.
Rademacher, H., Topics in Analytic Number Theory, Die Grund. der math. Wiss., Band, 169 (Springer, New York–Heidelberg, 1973).
Rhoades, R. C., ‘Asymptotics for the number of strongly unimodal sequences’, Int. Math. Res. Not., to appear.
Rhoades, R. C., ‘A unified approach to partial and mock theta functions’, Math. Res. Lett., to appear.
Rogers, L., ‘On two theorems of combinatory analysis and some allied identities’, Proc. Lond. Math. Soc. (2) 16 (1917), 315336.
Watson, G. N., ‘The final problem: an account of the mock theta functions’, J. Lond. Math. Soc. 2(2) (1936), 5580.
Zagier, D., ‘Vassiliev invariants and a strange identity related to the Dedekind eta-function’, Topology 40 (2001), 945960.
Zagier, D., ‘Ramanujan’s mock theta functions and their applications [d’aprés Zwegers and Bringmann–Ono]’, Sém. Bourbaki (2007/2008), Astérisque, No. 326, Exp. No. 986, vii–viii, (2010), 143–164.
Zagier, D., ‘Quantum modular forms’, in Quanta of Maths: Conference in Honor of Alain Connes, Clay Mathematics Proceedings, 11 (American Mathematical Society, Providence, 2010), 659675.
Zwegers, S., ‘Mock $\vartheta $-functions and real analytic modular forms’, in q-series with Applications to Combinatorics, Number Theory, and Physics, Contemporary Mathematics, 291 (eds. Berndt, B. C. and Ono, K.) (American Mathematical Society, 2001), 269277.
Zwegers, S., Mock Theta Functions, Ph.D. Thesis (Advisor: D. Zagier), (Universiteit Utrecht, 2002).
Zwegers, S., ‘Multivariable Appell functions’, preprint.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

MOCK THETA FUNCTIONS AND QUANTUM MODULAR FORMS

  • AMANDA FOLSOM (a1), KEN ONO (a2) and ROBERT C. RHOADES (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed