Skip to main content Accessibility help
×
Home

Nonlinear modulation of interacting between COMT and depression on brain function

  • L. Gong (a1), C. He (a1), Y. Yin (a2), Q. Ye (a1), F. Bai (a1) (a3), Y. Yuan (a2) (a3), H. Zhang (a4), L. Lv (a4), H. Zhang (a4), Z. Zhang (a1) (a3) and C. Xie (a1) (a3)...

Abstract

Background:

The catechol-O-methyltransferase (COMT) gene is related to dopamine degradation and has been suggested to be involved in the pathogenesis of major depressive disorder (MDD). However, how this gene affects brain function properties in MDD is still unclear.

Methods:

Fifty patients with MDD and 35 cognitively normal participants underwent a resting-state functional magnetic resonance imaging scan. A voxelwise and data-drive global functional connectivity density (gFCD) analysis was used to investigate the main effects and the interactions of disease states and COMT rs4680 gene polymorphism on brain function.

Results:

We found significant group differences of the gFCD in bilateral fusiform area (FFA), post-central and pre-central cortex, left superior temporal gyrus (STG), rectal and superior temporal gyrus and right ventrolateral prefrontal cortex (vlPFC); abnormal gFCDs in left STG were positively correlated with severity of depression in MDD group. Significant disease × COMT interaction effects were found in the bilateral calcarine gyrus, right vlPFC, hippocampus and thalamus, and left SFG and FFA. Further post-hoc tests showed a nonlinear modulation effect of COMT on gFCD in the development of MDD. Interestingly, an inverted U-shaped modulation was found in the prefrontal cortex (control system) but U-shaped modulations were found in the hippocampus, thalamus and occipital cortex (processing system).

Conclusion:

Our study demonstrated nonlinear modulation of the interaction between COMT and depression on brain function. These findings expand our understanding of the COMT effect underlying the pathophysiology of MDD.

Copyright

Corresponding author

*Corresponding author. Fax: +86 25 8328 5132. E-mail address:chmxie@163.com (C. Xie).

Footnotes

Hide All
1

The authors contribute equally to this article.

Footnotes

References

Hide All
[1]Smith, KMental health: a world of depression. Cah Rev The 2014;515:181.
[2]Sullivan, PFNeale, MCKendler, KSGenetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 2000;157:15521562.
[3]Consortium, CSparse whole-genome sequencing identifies two loci for major depressive disorder. Cah Rev The 2015;523:588591.
[4]Hyde, CLNagle, MWTian, CChen, XPaciga, SAWendland, JR, et al.Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat Genet 2016
[5]Leuchter, AFMcCracken, JTHunter, AMCook, IAAlpert, JEMonoamine oxidase a and catechol-o-methyltransferase functional polymorphisms and the placebo response in major depressive disorder. J Clin Psychopharmacol 2009;29:372377.
[6]Won, EHam, BJImaging genetics studies on monoaminergic genes in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2016;64:311319.
[7]Lopez-Leon, SJanssens, ACGonzalez-Zuloeta Ladd, AMDel-Favero, JClaes, SJOostra, BA, et al.Meta-analyses of genetic studies on major depressive disorder. Mol Psychiatry 2008;13:772785.
[8]Lambert, GJohansson, MAgren, HFriberg, PReduced brain norepinephrine and dopamine release in treatment-refractory depressive illness: evidence in support of the catecholamine hypothesis of mood disorders. Arch Gen Psychiatry 2000;57:787793.
[9]Leggio, GMSalomone, SBucolo, CPlatania, CMicale, VCaraci, F, et al.Dopamine D(3) receptor as a new pharmacological target for the treatment of depression. Eur J Pharmacol 2013;719:2533.
[10]Opmeer, EMKortekaas, RAleman, ADepression and the role of genes involved in dopamine metabolism and signaling. Prog Neurobiol 2010;92:112133.
[11]Männistö, PTKaakkola, SCatechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev 1999;51:593628.
[12]Lachman, HMPapolos, DFSaito, TYu, YMSzumlanski, CLWeinshilboum, RMHuman catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenet 1996;6:243250.
[13]Antypa, NDrago, ASerretti, AThe role of COMT gene variants in depression: bridging neuropsychological, behavioral and clinical phenotypes. Neurosci Biobehav Rev 2013;37:15971610.
[14]Meyer-Lindenberg, ANichols, TCallicott, JHDing, JKolachana, BBuckholtz, J, et al.Impact of complex genetic variation in COMT on human brain function. Mol Psychiatry 2006;11:867877. 797.
[15]Mier, DKirsch, PMeyer-Lindenberg, ANeural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis. Mol Psychiatry 2010;15:918927.
[16]Cools, RD’Esposito, MInverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 2011;69:e113e125.
[17]Fallon, SJWilliams-Gray, CHBarker, RAOwen, AMHampshire, APrefrontal dopamine levels determine the balance between cognitive stability and flexibility. Cereb Cortex 2013;23:361369.
[18]Bertolino, AFazio, LDi Giorgio, ABlasi, GRomano, RTaurisano, P, et al.Genetically determined interaction between the dopamine transporter and the D2 receptor on prefronto-striatal activity and volume in humans. J Neurosci 2009;29:12241234.
[19]Rakshi, JSUema, TIto, KBailey, DLMorrish, PKAshburner, J, et al.Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson's disease A 3D [(18)F]dopa-PET study. Brain 1999;122(Pt 9):16371650.
[20]Seok, JHChoi, SLim, HKLee, SHKim, IHam, BJEffect of the COMT val158met polymorphism on white matter connectivity in patients with major depressive disorder. Neurosci Lett 2013;545:3539.
[21]Watanabe, KKakeda, SYoshimura, RAbe, OIde, SHayashi, K, et al.Relationship between the catechol-O-methyl transferase Val108/158Met genotype and brain volume in treatment-naive major depressive disorder: voxel-based morphometry analysis. Psychiatry Res 2015;233:481487.
[22]Pan, CCMcQuoid, DRTaylor, WDPayne, MEAshley-Koch, ASteffens, DCAssociation analysis of the COMT/MTHFR genes and geriatric depression: an MRI study of the putamen. Int J Geriatr Psychiatry 2009;24:847855.
[23]Hayashi, KYoshimura, RKakeda, SKishi, TAbe, OUmene-Nakano, W, et al.COMT Val158Met, but not BDNF Val66Met, is associated with white matter abnormalities of the temporal lobe in patients with first-episode, treatment-naive major depressive disorder: a diffusion tensor imaging study. Neuropsychiatr Dis and Treat 2014;10:11831190.
[24]Heinz, ASmolka, MNThe effects of catechol O-methyltransferase genotype on brain activation elicited by affective stimuli and cognitive tasks. Rev Neurosci 2006;17:359367.
[25]Opmeer, EMKortekaas, Rvan Tol, MJvan der Wee, NJWoudstra, Svan Buchem, MA, et al.Influence of COMT val158met genotype on the depressed, brain during emotional processing and working memory. PLoS One 2013;8:e73290.
[26]Tomasi, DVolkow, NDFunctional connectivity density mapping. Proc Natl Acad Sci U S A. 2010;107:98859890.
[27]Tomasi, DVolkow, NDFunctional connectivity hubs in the human brain. Neuroimage 2011;57:908917.
[28]Shen, XWu, YGuan, TWang, XQian, MLin, M, et al.Association analysis of COMT/MTHFR polymorphisms and major depressive disorder in Chinese Han population. J Affect Disord. 2014;161:7378.
[29]Gong, LYin, YHe, CYe, QBai, FYuan, Y, et al.Disrupted reward circuits is associated with cognitive deficits and depression severity in major depressive disorder. J Psychiat Res. 2017;84:917.
[30]Ashburner, JBarnes, GChen, CDaunizeau, JFlandin, GFriston, K, et al.SPM12 Manual. London (UK): Wellcome Trust Centre for Neuroimaging; 2014.
[31]Power, JDBarnes, KASnyder, AZSchlaggar, BLPetersen, SESteps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. Neuroimage 2013;76:439441.
[32]Power, JDBarnes, KASnyder, AZSchlaggar, BLPetersen, SESpurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 2012;59:21422154.
[33]Zhang, BLi, MQin, WDemenescu, LRMetzger, CDBogerts, B, et al.Altered functional connectivity density in major depressive disorder at rest. Eur Arch Psychiatry Clin Neurosci 2016;266:239248.
[34]Power, JDCohen, ALNelson, SMWig, GSBarnes, KAChurch, JA, et al.Functional network organization of the human brain. Neuron 2011;72:665678.
[35]Aron, ARRobbins, TWPoldrack, RAInhibition and the right inferior frontal cortex: one decade on. Trends Cogn Sci 2014;18:177185.
[36]Visser, MLambon Ralph, MADifferential contributions of bilateral ventral anterior temporal lobe and left anterior superior temporal gyrus to semantic processes. J Cogn Neurosci 2011;23:31213131.
[37]Hamilton, JPFarmer, MFogelman, PGotlib, IHDepressive Rumination, the default-mode network and the dark matter of clinical neuroscience. Biol Psychiatry 2015
[38]Li, WLiu, BXu, JJiang, TYu, CInteraction of COMT rs4680 and BDNF rs6265 polymorphisms on functional connectivity density of the left frontal eye field in healthy young adults. Hum Brain Mapp 2016;37:24682478.
[39]Honea, RVerchinski, BAPezawas, LKolachana, BSCallicott, JHMattay, VS, et al.Impact of interacting functional variants in COMT on regional gray matter volume in human brain. Neuroimage 2009;45:4451.
[40]Krach, SJansen, AKrug, AMarkov, VThimm, MSheldrick, AJ, et al.COMT genotype and its role on hippocampal-prefrontal regions in declarative memory. Neuroimage 2010;53:978984.
[41]Tian, TQin, WLiu, BJiang, TYu, CFunctional connectivity in healthy subjects is nonlinearly modulated by the COMT and DRD2 polymorphisms in a functional system-dependent manner. J Neurosci 2013;33:1751917526.
[42]Vijayraghavan, SWang, MBirnbaum, SGWilliams, GVArnsten, AFInverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 2007;10:376384.
[43]Dunlop, BWNemeroff, CBThe role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 2007;64:327337.
[44]Lotta, TVidgren, JTilgmann, CUlmanen, IMelen, KJulkunen, I, et al.Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry-Us 1995;34:42024210.
[45]Qin, SHelena, CMark, RLuo, JBarbara, FHermans, EJ, et al.The effect of moderate acute psychological stress on working memory-related neural activity is modulated by a genetic variation in catecholaminergic function in humans. Front Integr Neurosci 2012;6:16.
[46]Xu, JQin, WLiu, BJiang, TYu, CInteractions of genetic variants reveal inverse modulation patterns of dopamine system on brain gray matter volume and resting-state functional connectivity in healthy young adults. Brain Struct Funct 2016;221:38913901.
[47]Williams, GVGoldman-Rakic, PSModulation of memory fields by dopamine D1 receptors in prefrontal cortex. Cah Rev The 1995;376:572575.
[48]Bertolino, ADi Giorgio, ABlasi, GSambataro, FCaforio, GSinibaldi, L, et al.Epistasis between dopamine regulating genes identifies a nonlinear response of the human hippocampus during memory tasks. Biol Psychiatry 2008;64:226234.
[49]Qin, SCousijn, HRijpkema, MLuo, JFranke, BHermans, EJ, et al.The effect of moderate acute psychological stress on working memory-related neural activity is modulated by a genetic variation in catecholaminergic function in humans. Front Integr Neurosci 2012;6:16.
[50]Sambataro, FFazio, LTaurisano, PGelao, BPorcelli, AMancini, M, et al.DRD2 genotype-based variation of default mode network activity and of its relationship with striatal DAT binding. Schizophr Bull 2013;39:206216.
[51]Guo, JSimmons, WKHerscovitch, PMartin, AHall, KDStriatal dopamine D2-like receptor correlation patterns with human obesity and opportunistic eating behavior. Mol Psychiatry 2014;19:10781084.

Keywords

Type Description Title
WORD
Supplementary materials

Gong et al. supplementary material
Gong et al. supplementary material

 Word (750 KB)
750 KB

Nonlinear modulation of interacting between COMT and depression on brain function

  • L. Gong (a1), C. He (a1), Y. Yin (a2), Q. Ye (a1), F. Bai (a1) (a3), Y. Yuan (a2) (a3), H. Zhang (a4), L. Lv (a4), H. Zhang (a4), Z. Zhang (a1) (a3) and C. Xie (a1) (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

Nonlinear modulation of interacting between COMT and depression on brain function

  • L. Gong (a1), C. He (a1), Y. Yin (a2), Q. Ye (a1), F. Bai (a1) (a3), Y. Yuan (a2) (a3), H. Zhang (a4), L. Lv (a4), H. Zhang (a4), Z. Zhang (a1) (a3) and C. Xie (a1) (a3)...
Submit a response

Comments

No Comments have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *