Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-23T04:42:44.210Z Has data issue: false hasContentIssue false

In vivo exploration of brain phosphorus 31 metabolism in patients with senile dementia of Alzheimer type

Published online by Cambridge University Press:  16 April 2020

G Mecheri
Affiliation:
CHS, Le Vinatier, 95, boulevard Pinel, 69677Bron Cedex, France
Y Bissuel
Affiliation:
CHS, Le Vinatier, 95, boulevard Pinel, 69677Bron Cedex, France
J Dalery
Affiliation:
CHS, Le Vinatier, 95, boulevard Pinel, 69677Bron Cedex, France
JL Terra
Affiliation:
CHS, Le Vinatier, 95, boulevard Pinel, 69677Bron Cedex, France
G Balvay
Affiliation:
CHS, Le Vinatier, 95, boulevard Pinel, 69677Bron Cedex, France
B Roussel
Affiliation:
CHS, Le Vinatier, 95, boulevard Pinel, 69677Bron Cedex, France
M Marie-Cardine
Affiliation:
CHS, Le Vinatier, 95, boulevard Pinel, 69677Bron Cedex, France
Get access

Summary

In vivo NMR 31p spectroscopy is a non invasive, non ionizing method of exploration of energy and phospholipid metabolism in the brain. This study consisted of comparing 31p spectra in five patients with Senile Dementia of Alzheimer Type (SDAT) with those of four controls of similar ages. Abnormal phosphonionocsters (PME) concentrations, either high or low, were found in the patients, but statistical analysis did not elicit any significant difference relative to controls.

Type
Rapid communication
Copyright
Copyright © European Psychiatric Association 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ball, MJFisman, MHachinski, VBlume, WFox, AKral, VAKirshen, AJFox, H. A new definition of Alzheimer's disease: a hippocampal dementia. Lancet 1985;14-6CrossRefGoogle ScholarPubMed
Barany, MChang, YCArus, CRustan, TFrey, WH. Increased glycerol-3-phosphorylcholine in post-mortem Alzheimer's brain. Lancet 1985:517CrossRefGoogle ScholarPubMed
Bartus, RTDean, RLBeer, BLippa, AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982;217:408-17CrossRefGoogle ScholarPubMed
Bissuel, YMecheri, GMehier, HDalery, JTerra, JLRoussel, BMarie-Cardine, M. Intérêt de la spectroscopie RMN dans l'exploration du métabolisme cérébral de sujets atteints de maladie d'Alzheimer. L'Encéphale 1993:2935Google Scholar
Blusztajn, JKMaire, JCTacconi, MTWurtman, RJ. The possible role of neuronal choline metabolism in the pathophysiology of Alzheimer's disease; a hypothesis.In: Wurtman, RJCorkin, SHGrowdon, JH eds. Alzheimer's disease: advances in basic research and therapies. Center for Brain Sciences and Metabolism. Charitable Trust. Cambridge (USA), 1984:183—98Google Scholar
Blusztajn, JKGonzalez-Coviella, ILLogue, MGrowdon, JHWurtman, RJ. Levels of phospholipid catabolic intermediates, glycerophosphocholine and glycerophosphoethanolamine, are elevated in brains of Alzheimer's disease but not of Down's syndrome patients. Brain Res 1990;536:240-4CrossRefGoogle Scholar
Farooqui, AAHorrocks, LA. Metabolic and functional aspects of neural membrane phospholipids.In: Horrocks, LAKanfer, JNPorcellati, G eds. Phospholipids in the nervous system. New York: Raven Press, 1985;2:341-8Google Scholar
Farooqui, AALiss, LHorrocks, LA. Neurochemical aspects of Alzheimer's disease: involvement of membrane phospholipids. Met Brain Dis 1988;3:1935CrossRefGoogle ScholarPubMed
Geddes, JMonaghan, DCotman, CLott, ITKim, RCChui, HC. Plasticity of hippocampal circuitry in Alzheimer's disease. Science 1985;230:1179-81CrossRefGoogle ScholarPubMed
Hachinski, VCIllif, LDZilhka, EDuBoulay, GHMcAllister, VLMarshall, JRoss Russel, RWSymon, L. Cerebral blood flow in dementia. Arch Neurol 1975;32:632-7CrossRefGoogle ScholarPubMed
Hubesch, BSappey-Marinier, DDeiken, RSeidenwurm, DWeiner, MW. Regional differences of phosphorus metabolites in the human brain.In: Book of Abstracts: Society of Magnetic Resonance in Medicine. 8th annual meeting, SMRM: Berkeley, 1989;1:447Google Scholar
Kanfer, JNHattori, HOrihel, D. Reduced phospholipase D activity in brain tissue samples from Alzheimer's disease patients. Ann Neurol 1986;20:265-7CrossRefGoogle ScholarPubMed
Lock, TAbou-Saleh, MTEdwards, RHT. Psychiatry and the new magnetic resonance era. Br J Psychiatry 1990;157 (suppl 9):3855CrossRefGoogle Scholar
Mehier, HMaurice, MBonche, JPGaillard, EForay, JRoussel, B. Spectrométrie RMN in vivo avec un aimant résistif à 1,2 T. CR Acad Sci Paris 1988;306:Série III:313-6Google Scholar
Miatto, OGonzalez, RGBuonanno, FGrowdon, JH. In vitro 31P NMR spectroscopy detects altered phospholipid metabolism in Alzheimer's disease. Can J Neurol Sci 1986;13:535-9CrossRefGoogle ScholarPubMed
Miatto, OBlusztajn, JKLogue, MGonzales, GBuonanno, FGrowdon, JH. Detection of phospholipids in brain tissue using 31P NMR spectroscopy.In: Bazan, NGHorrocks, LAToffano, G eds. Phospholipids in the Nervous System: Biochemical and Molecular Pathology. Liviana: Padua (Italy), l989;243-50Google Scholar
Miller, BLJenden, DJCummings, JLRead, SRice, KBenson, DF. Abnormal erythrocyte choline and influx in Alzheimer's disease. Life Sci 1986;38:485-90CrossRefGoogle ScholarPubMed
Nitsch, RMBlusztajn, JKPittas, AGSlack, BEGrowdon, JHWurtman, RJ. Evidence for a membrane defect in Alzheimer disease brain. Proc Natl Acad Sci USA 1992;89:1671-5CrossRefGoogle ScholarPubMed
Pettegrew, JWMinshew, NJCohen, MMKopp, SJGlonek, T. 3P NMR changes in Alzheimer's and Huntington's disease brain. Neurology 1984;34(suppl 1):281Google Scholar
Pettegrew, JWKopp, SJMinshew, NJGlonek, TFeliksik, JMTow, JPCohen, MM. 31P Nuclear magnetic resonance studies of phosphoglyceride metabolism in developing and degenerating brain: preliminary observations. J Neuropathol Exp Neurol 1987a;46:419-30CrossRefGoogle Scholar
Pettegrew, JWWithers, GPanchalingam, KPost, JFM. 31P Nuclear magnetic resonance (NMR) spectroscopy of brain in aging and Alzheimer's disease. J Neural Transm 1987b;24:(suppl):261-8Google Scholar
Pettegrew, JWPanchalingam, KMoossy, JMartinez, JRao, GBoller, F. correlation of phosphorus-31 magnetic resonance spectroscopy and morphologic findings in Alzheimer's disease. Arch Neurol 1988a;45:1093-6CrossRefGoogle Scholar
Pettegrew, JWMoossy, JWithers, GMcKeag, DPanchalingam, K. 31P nuclear magnetic resonance study of the brain in Alzheimer's disease. J Neuropathol Exp Neurol 1988b;47:235-48CrossRefGoogle Scholar
Pettegrew, JW. Molecular insights into Alzheimer's disease. NY Acad Sci 1989;568:528CrossRefGoogle ScholarPubMed
Pettegrew, JWKlunk, WENuclear magnetic resonance study of phospholipid metabolites in Alzheimer's disease.In: Rapoport, SIPetit, HLeys, DChristen, Y eds. Imaging, cerebral tomography and Alzheimer's disease. Berlin: Springer-Verlag, 1990a; 159—65CrossRefGoogle Scholar
Pettegrew, JWPanchalingam, KWithers, GMcKeag, DStrychor, S. Changes in brain energy and phospholipid metabolism during development and aging in the Fischer 344 rat. J Neuropathol Exp Neurol 1990b;49:237-19CrossRefGoogle Scholar
Pettegrew, JWWithers, GPanchalingam, K. 31P NMR of brain and Alzheimer's disease.In: Pettegrew, JW ed. NMR: Principles and Applications to Biomedical research. New York: Spinger-Verlag, 1990c;204-54CrossRefGoogle Scholar
Podreka, ISuess, EGoldenberg, GSteiner, MBrucke, TMuller, CLang, WNeirinckx, RDDeecke, L. Initial experience with Technetium-99m HM-PAO brain Spect. J Nucl Med 1987;28:1657-66Google ScholarPubMed
Roussel, BMaurice, MGaillard, EBissuel, YDalery, JMehier, H. Spectres RMN du P31 cérébral en fonction de l'âge et de la pathologie chez l'homme in vivo. Communication affichée: Spectroscopie RMN in vivo. Symposium satellite. Congrès International de Radiologic Lyon. 10-12 juillet 1989Google Scholar
Ross, BNaraimhan, PT. Amplification or obfuscation: is localisation improving our clinical understanding of phosphorus metabolism? NMR Biomed 1989;2:340-45CrossRefGoogle ScholarPubMed
Samuel, DHeron, DSHerschkowitz, MShinitsky, M. Aging, receptor binding and membrane viscosity.In: Giacobini, EVernadakis, A. eds. The aging brain: cellular and molecular mechanisms of aging in the nervous system. New York: Raven Press, 1982;20:93-7Google Scholar
Scheibel, AB. Dentritic changes in senile and presenile dementias.In: Katzman, R ed. Congenital and acquired cognitive disorders. New York: Raven Press, l977;107-24Google Scholar
Signoret, JLBonvaret, MBenoit, NBolgert, FEustache, FLéger, JM. Batterie d'estimation des états démentiels: description et validation.In: La maladie d'Alzheimer et ses limites. Congrès de Psychiatrie et de Neurologie de langue française. LXXXVIe Session. Chambéry, 13-17 juin 1988. Compte rendu par JM Léger. Masson: Paris, l989;265-70Google Scholar
Suzuki, KKatzman, RKorey, SR. Chemical studies on Alzheimer's disease. J Neuropathol Exp Neurol 1965:24:211-24CrossRefGoogle ScholarPubMed
Traill, KNWick, G. Lipids and lymphocyte function. Immunol Today 1984;5:70-6CrossRefGoogle ScholarPubMed
Tucek, S. Regulation of acetylcholine synthesis in the brain. J Neurochem 1985;44:1124CrossRefGoogle Scholar
Welch, KMA. 3P in vivo spectroscopy of adult human brain.In: Pettegrew, JW ed. NMR: Principles and Applications to Biomedical research. New York: Spinger-Verlag, 1990;429-67CrossRefGoogle Scholar
Submit a response

Comments

No Comments have been published for this article.