Skip to main content Accessibility help
×
Home

Well-posedness of a diffuse-interface model for two-phase incompressible flows with thermo-induced Marangoni effect

  • HAO WU (a1)

Abstract

We investigate a non-isothermal diffuse-interface model that describes the dynamics of two-phase incompressible flows with thermo-induced Marangoni effect. The governing PDE system consists of the Navier--Stokes equations coupled with convective phase-field and energy transport equations, in which the surface tension, fluid viscosity and thermal diffusivity are allowed to be temperature dependent functions. First, we establish the existence and uniqueness of local strong solutions when the spatial dimension is two and three. Then, in the two-dimensional case, assuming that the L -norm of the initial temperature is suitably bounded with respect to the coefficients of the system, we prove the existence of global weak solutions as well as the existence and uniqueness of global strong solutions.

Copyright

References

Hide All
[1] Abels, H. (2009) On a diffuse interface model for two-phase flows of viscous incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194 (2), 463506.
[2] Anderson, D.-M., McFadden, G.-B. & Wheeler, A.-A. (1998) Diffuse-interface methods in fluid mechanics. Annu. Review of Fluid Mech. 30, 139165.
[3] Borcia, R. & Bestehorn, M. (2003) Phase-field model for Marangoni convection in liquid-gas systems with a deformable interface. Phys. Rev. E 67, 066307.
[4] Borcia, R. & Bestehorn, M. (2006) Phase-field models for Marangoni convection in planar layers. J. Optoelectron. Adv. Mater. 8, 10371039.
[5] Boyer, F. (1999) Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptot. Anal. 20 (2), 175212.
[6] Cahn, J.-W. & Hillard, J.-E. (1958) Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258267.
[7] Climent-Ezquerra, B., Guillén-González, F. & Jesus Moreno-Iraberte, M. (2009) Regularity and time-periodicity for a nematic liquid crystal model. Nonlinear Anal. 71 (1 & 2), 539549.
[8] Eleuteri, M., Rocca, E. & Schimperna, G. (2014) Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids. arXiv:1406.1635.
[9] Eleuteri, M., Rocca, E. & Schimperna, G. (2015) On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids. Discrete Contin. Dyn. Syst. 35 (6), 24972522.
[10] Feng, J., Liu, C., Shen, J. & Yue, P.-T. (2005) An energetic variational formulation with phase field methods for interfacial dynamics of complex fluids: Advantages and challenges. In: Calderer, M.-C. T. & Terentjev, E. (editors), Modeling of Soft Matter, IMA Volumes in Mathematics and its Applications, Vol. 141, Springer, New York, pp. 126.
[11] Feng, X.-B., He, Y.-N. & Liu, C. (2007) Analysis of finite element approximations of a phase field model for two phase fluids. Math. Comp. 76 (258), 539571.
[12] Gal, C. & Grasselli, M. (2010) Longtime behavior for a model of homogeneous incompressible two-phase flows. Discrete Conti. Dyna. Sys. 28 (1), 139.
[13] Gal, C. & Grasselli, M. (2010) Asymptotic behavior of a Cahn–Hilliard–navier–stokes system in 2D. Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (1), 401436.
[14] Gal, C. & Grasselli, M. (2010) Trajectory attractors for binary fluid mixtures in 3D. Chinese Ann. Math. Ser. B 31 (5), 655678.
[15] Guo, Z., Lin, P. & Wang, Y. (2014) Continuous finite element schemes for a phase field model in two-layer fluid Bénard–Marangoni convection computations. Comp. Phys. Commun. 185 (1), 6378.
[16] Hou, T. & Li, C. (2005) Global well-posedness of the viscous Boussinesq equations. Discrete Conti. Dynam. Sys. 12 (1), 112.
[17] Hua, J.-S., Lin, P., Liu, C. & Wang, Q. (2011) Energy law preserving C 0 finite element schemes for phase field models in two-phase flow computations. J. Comp. Phys. 230 (19), 71157131.
[18] Huang, A.-M. (2015) The global well-posedness and global attractor for the solutions to the 2D Boussinesq system with varibale viscosity and the thermal diffusivity. Nonlinear Anal. 113, 401429.
[19] Lai, M.-J., Pan, R.-H. & Zhao, K. (2011) Initial boundary value problem for two-dimensional viscous Boussinesq equations. Arch. Ration. Mech. Anal. 199 (3), 739760.
[20] Li, H.-P., Pan, R.-H. & Zhang, W.-Z. (2015) Initial boundary value problem for 2D Boussinesq equations with temperature-dependent diffusion. J. Hyper. Differ. Equ. 12 (3), 469488.
[21] Lieberman, G.-M. (1996) Second Order Parabolic Differential Equations, World Scientific, Singapore.
[22] Lin, F.-H. & Liu, C. (1995) Nonparabolic dissipative system modeling the flow of liquid crystals. Comm. Pure Appl. Math. XLVIII, 501537.
[23] Liu, C. & Shen, J. (2003) A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179 (3 & 4), 211228.
[24] Liu, C., Shen, J., Feng, J. & Yue, P.-T. (2005) Variational approach in two-phase flows of complex fluids: transport and induced elastic stress. In: Miranville, A. (editor), Mathematical Models and Methods in Phase Transitions, Nova Publishers, New York, pp. 259278.
[25] Lorca, S.-A. & Boldrini, J.-L. (1996) Stationary solutions for generalized Boussinesq models. J. Diff. Equ. 124 (2), 389406.
[26] Lorca, S.-A. & Boldrini, J.-L. (1996) The initial value problem for a generalized Boussinesq model: Regularity and global existence of strong solutions. Mat. Contemp. 11, 7194.
[27] Lorca, S.-A. & Boldrini, J.-L. (1999) The initial value problem for a generalized Boussinesq model. Nonlinear Anal. 36 (4), 457480.
[28] Lowengrub, J. & Truskinovsky, L. (1998) Quasi-incompressible Cahn–Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454, 26172654.
[29] Marangoni, C. (1871) Ueber die Ausbreitung der Tropfen einer Flussigkeit auf der Oberflache einer anderen. Ann. Phys. Chem. (Poggendorff) 143 (7), 337354.
[30] Mendes-Tatsis, M.-A. & Agble, D. (2000) The effect of surfactants on Marangoni convection in the isobutanol/water system. J. Non-Equilib. Thermodyn. 25 (3 & 4), 239249.
[31] Pata, V. & Zelik, S. (2007) A result on the existence of global attractors for semigroups of closed operators. Commun. Pure Appl. Anal. 6 (2), 481486.
[32] Simon, J. (1987) Compact sets in the space Lp (0,T;B). Ann. Mat. Pura Appl. 146 (1), 6596.
[33] Sternling, C.-V. & Scriven, E. (1959) Interfacial turbulence: Hydrodynamic instability and the marangoni effect. A. I. Ch. E. J. 5, 514523.
[34] Sun, P.-T., Liu, C. & Xu, J.-C. (2009) Phase-field model of thermo-induced Marangoni effects in the mixtures and its numerical similations with mixed finite element method. Commun. Comput. Phys. 6 (5), 10951117.
[35] Sun, Y.-Z. & Zhang, Z.-F. (2013) Global regularity for the initial-boundary value problem of the 2-D Boussinesq system with variable viscosity and thermal diffusivity. J. Differ. Equ. 255 (6), 10691085.
[36] Temam, R. (1977) Navier–Stokes Equations: Theory and Numerical Analysis. Studies in Mathematics and its Applications, Vol. 2, Oxford, North-Holland, Amsterdam, New York.
[37] Thompson, J. (1855) On certain curious motions observable at the surfaces of wine and other alcoholic liquors. Phil. Mag. 10 (67), 330333.
[38] Wang, C. & Zhang, Z.-F. (2011) Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity. Adv. Math. 228 (1), 4362.
[39] Wu, H. & Xu, X. (2013) Analysis of a diffuse-interface model for the binary viscous incompressible fluids with thermo-induced Marangoni effects. Commun. Math. Sci. 11 (2), 603633.
[40] Yue, P.-T., Feng, J., Liu, C. & Shen, J. (2004) A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293317.
[41] Yue, P.-T., Feng, J., Liu, C. & Shen, J. (2005) Interfacial forces and Marangoni flow on a nematic drop retracting in an isotropic fluid. J. Colloid. Intert. Sci. 290 (1), 281288.
[42] Zhao, K. (2011) Global regularity for a coupled Cahn–Hilliard–Boussinesq system on bounded domains. Quart. Appl. Math. 69 (2), 331356.
[43] Zheng, S. (2004) Nonlinear Evolution Equations. Pitman series Monographs and Survey in Pure and Applied Mathematics, 133, Chapman & Hall/CRC, Boca Raton, Florida.

Keywords

Related content

Powered by UNSILO

Well-posedness of a diffuse-interface model for two-phase incompressible flows with thermo-induced Marangoni effect

  • HAO WU (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.