[1]
Craya, A. (1949) Theoretical research on the flow of nonhomogeneous fluids. La Houille Blanche
4
(2), 44–55.

[2]
Forbes, L. K. & Hocking, G. C. (1990) Flow caused by a point sink in a fluid having a free surface. J. Austral. Math. Soc. Ser. B 32
(2), 233–252.

[3]
Forbes, L. K. & Hocking, G. C. (1993) Flow induced by a line sink in a quiescent fluid with surface-tension effects. J. Austral. Math. Soc. Ser. B 34
(3), 377–391.

[4]
Forbes, L. K. & Hocking, G. C. (1995) The bath-plug vortex.
J. Fluid Mech.
284, 43–62.

[5]
Forbes, L. K. & Hocking, G. C. (2003) On the computation of steady axi-symmetric withdrawal from a two-layer fluid. Comput. Fluids
32
(3), 385–401.

[6]
Forbes, L. K., Hocking, G. C. & Chandler, G. A. (1996) A note on withdrawal through a point sink in fluid of finite depth. J. Austral. Math. Soc. Ser. B 37
(3), 406–416.

[7]
Gariel, P. (1949) Experimental research on the flow of nonhomogeneous fluids.
La Houille Blanche
4, 56–65.

[8]
Hocking, G. C. (1985) Cusp-like free-surface flows due to a submerged source or sink in the presence of a flat or sloping bottom. J. Aust. Math Soc. Ser. B 26
(APR), 470–486.

[9]
Hocking, G. C. (1991) Withdrawal from two-layer fluid through line sink. J. Hydr. Engng ASCE 117
(6), 800–805.

[10]
Hocking, G. C. (1995) Supercritical withdrawal from a two-layer fluid through a line sink.
J. Fluid Mech.
297, 37–47.

[11]
Hocking, G. C. & Forbes, L. K. (1991) A note on the flow induced by a line sink beneath a free surface. J. Aust. Math Soc. Ser. B 32
(3), 251–260.

[12]
Hocking, G. C. & Forbes, L. K. (2001) Supercritical withdrawal from a two-layer fluid through a line sink if the lower layer is of finite depth.
J. Fluid Mech.
428, 333–348.

[13]
Hocking, G. C., Vanden Broeck, J.-M. & Forbes, L. K. (2002) A note on withdrawal from a fluid of finite depth through a point sink. ANZIAM J.
44
(2), 181–191.

[14]
Hocking, G. C., Forbes, L. K. & Stokes, T. E. (2014) A note on steady flow into a submerged point sink. ANZIAM J.
56
(2), 150–159.

[15]
Hocking, G. C., Stokes, T. E. & Forbes, L. K. (2010) A rational approximation to the evolution of a free surface during fluid withdrawal through a point sink. ANZIAM J. Ser. E 51, E31–E36.

[16]
Huber, D. G. (1960) Irrotational motion of two fluid strata towards a line sink. J. Engng. Mech. Div. Proc. ASCE, 86, EM4, 71–85.

[17]
Imberger, J. & Hamblin, P. F. (1982) Dynamics of lakes, reservoirs and cooling ponds.
Ann. Rev. Fluid Mech.
14, 153–187.

[18]
Jirka, G. H. & Katavola, D. S. (1979) Supercritical withdrawal from two-layered fluid systems, part 2 three-dimensional flow into a round intake. J. Hyd. Res.
17
(1), 53–62.

[19]
Landrini, M. & Tyvand, P. A. (2001) Generation of water waves and bores by impulsive bottom flux. J. Engng. Maths
39
(1–4), 131–171.

[20]
Lawrence, G. A. & Imberger, J. (1979) *Selective Withdrawal Through a Point Sink in a Continuously Stratified Fluid with a Pycnocline. Tech. Report No. ED-79-002*, Dept. of Civil Eng., University of Western Australia, Australia.

[21]
Lubin, B. T. & Springer, G. S. (1967) The formation of a dip on the surface of a liquid draining from a tank. J. Fluid Mech.
29, 385–390.

[22]
Lustri, C. J., McCue, S. W. & Chapman, S. J. (2013) Exponential asymptotics of free surface flow due to a line source. IMA J. Appl. Math.
78
(4), 697–713.

[23]
Miloh, T. & Tyvand, P. A. (1993) Nonlinear transient free-surface flow and dip formation due to a point sink. Phys. Fluids A
5
(6), 1368–1375.

[24]
Sautreaux, C. (1901) Mouvement d'un liquide parfait soumis à lapesanteur. Dé termination des lignes de courant.
J. Math. Pures Appl.
7, 125–159.

[25]
Scullen, D. & Tuck, E. O. (1995) Non-linear free-surface flow computations for submerged cylinders. J. Ship Res.
39
(3), 185–193.

[26]
Stokes, T. E., Hocking, G. C. & Forbes, L. K. (2002) Unsteady free surface flow induced by a line sink. J. Eng. Math.
47
(2), 137–160.

[27]
Stokes, T. E., Hocking, G. C. & Forbes, L. K. (2005) Unsteady flow induced by a withdrawal point beneath a free surface. ANZIAM J.
47
(2), 185–202.

[28]
Stokes, T. E., Hocking, G. C. & Forbes, L. K. (2008) Unsteady flow induced by withdrawal in a fluid of finite depth. Comput. Fluids
37
(3), 236–249.

[29]
Tuck, E. O. (1997) Solution of nonlinear free-surface problems by boundary and desingularised integral equation techniques. In: Noye, J.
et al. (editors), Proc. 8th Biennial Computational Techniques and Applications Conference, World Scientific, Singapore, pp. 11–26.

[30]
Tuck, E. O. & Vanden Broeck, J.-M. (1984) A cusp-like free-surface flow due to a submerged source or sink. J. Aust. Math Soc. Ser. B
25
(APR), 443–450.

[31]
Vanden Broeck, J.-M. & Keller, J. B. (1987) Free surface flow due to a sink.
J. Fluid Mech.
175, 109–117.

[32]
Wehausen, J. V. & Laitone, E. V. (1960) Surface waves. In: Encyclopaedia of Physics, Vol. IX, Springer-Verlag, Berlin, pp. 446–778.

[33]
Xue, M. & Yue, D. K. P. (1998) Nonlinear free-surface flow due to an impulsively started submerged point sink.
J. Fluid Mech.
364, 325–347.

[34]
Yih, C. S. (1980) Stratified Flows, Academic Press, New York, pp. 110–121.