×
Home

# The steepest descent dynamical system with control. Applications to constrained minimization

## Abstract

Let H be a real Hilbert space, $\Phi_1: H\to \xR$ a convex function of class ${\mathcal C}^1$ that we wish to minimize under the convex constraint S. A classical approach consists in following the trajectories of the generalized steepest descent system (cf.   Brézis [CITE]) applied to the non-smooth function  $\Phi_1+\delta_S$ . Following Antipin [1], it is also possible to use a continuous gradient-projection system. We propose here an alternative method as follows: given a smooth convex function  $\Phi_0: H\to \xR$ whose critical points coincide with S and a control parameter $\varepsilon:\xR_+\to \xR_+$ tending to zero, we consider the “Steepest Descent and Control” system $(SDC) \qquad \dot{x}(t)+\nabla \Phi_0(x(t))+\varepsilon(t)\, \nabla \Phi_1(x(t))=0,$ where the control ε satisfies $\int_0^{+\infty} \varepsilon(t)\, {\rm d}t =+\infty$ . This last condition ensures that ε “slowly” tends to 0. When H is finite dimensional, we then prove that $d(x(t), {\rm argmin}\kern 0.12em_S \Phi_1) \to 0 \quad (t\to +\infty),$ and we give sufficient conditions under which  $x(t) \to \bar{x}\in \,{\rm argmin}\kern 0.12em_S \Phi_1$ . We end the paper by numerical experiments allowing to compare the (SDC) system with the other systems already mentioned.

## References

Hide All
[1] Antipin, A.S., Minimization of convex functions on convex sets by means of differential equations. Differ. Equ. 30 (1994) 1365-1375 (1995).
[2] V. Arnold, Equations différentielles ordinaires. Éditions de Moscou (1974).
[3] Attouch, H. and Cominetti, R., A dynamical approach to convex minimization coupling approximation with the steepest descent method. J. Differ. Equ. 128 (1996) 519-540.
[4] Attouch, H. and Czarnecki, M.-O., Asymptotic control and stabilization of nonlinear oscillators with non isolated equilibria. J. Differ. Equ. 179 (2002) 278-310.
[5] H. Brézis, Opérateurs maximaux monotones dans les espaces de Hilbert et équations d'évolution. Lect. Notes 5 (1972).
[6] Bruck, R.E., Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Funct. Anal. 18 (1975) 15-26.
[7] Cabot, A. and Czarnecki, M.-O., Asymptotic control of pairs of oscillators coupled by a repulsion, with non isolated equilibria. SIAM J. Control Optim. 41 (2002) 1254-1280.
[8] A. Haraux, Systèmes dynamiques dissipatifs et applications. RMA 17, Masson, Paris (1991).
[9] W. Hirsch and S. Smale, Differential equations, dynamical systems and linear algebra. Academic Press, New York (1974).
[10] J.P. Lasalle and S. Lefschetz, Stability by Lyapounov's Direct Method with Applications. Academic Press, New York (1961).
[11] Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967) 591-597.
[12] H. Reinhardt, Equations différentielles. Fondements et applications. Dunod, Paris, 2 e edn. (1989).
[13] A.N. Tikhonov and V.Ya. Arsenine, Méthodes de résolution de problèmes mal posés. MIR (1976).
Recommend this journal

ESAIM: Control, Optimisation and Calculus of Variations
• ISSN: 1292-8119
• EISSN: 1262-3377
• URL: /core/journals/esaim-control-optimisation-and-calculus-of-variations
Who would you like to send this to? *

×

## Metrics

### Full text viewsFull text views reflects the number of PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 0 *