[1] H. Abou-Kandil, G. Freiling, V. Ionescu and G.
Jank, Matrix Riccati equations: In control and systems theory. *Systems &
Control: Foundations & Applications*.
Birkhäuser
Verlag, Basel (2003).

[2] V.I. Arnol′d, Geometrical methods in
the theory of ordinary differential equations. Translated from the Russian by Joseph
Szäcs.
2nd edition, vol. 250, *Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]*. Springer-Verlag, New York (1988).

[3] V.I. Arnol′d, Ordinary Differential
Equations. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong,
Barcelona, Budapest (2003).

[4]
Barbu, V. and Wang, G., Feedback stabilization of periodic
solutions to nonlinear parabolic-like evolution systems.
*Indiana Univ. Math. J.*
54 (2005)
1521–1546.

[5] R. Brockett, A stabilization problem, Open
problems in mathematical systems and control theory. *Commun. Control Engrg.
Ser.* Springer, London (1999) 75–78.

[6] Brunovský, P.,
Controllability and linear closed-loop controls in linear periodic systems. *J.
Differ. Equs.*
6 (1969) 296–313.

[7] J.M. Coron, Control and nonlinearity,
*Mathematical Surveys and Monographs*, vol. 136 of *Amer. Math.
Soc.* Providence, RI (2007).

[8] Floquet, G., Sur les équations différentielles
linéaires à coefficients périodiques (in French). *Ann. Sci. École
Norm. Sup.*
12 (1883) 47–88.

[9] D. Henry, Geometric theory of semilinear parabolic
equations, vol. 840 of *Lect. Notes Math.* Springer-Verlag, Berlin, New
York (1981).

[10] M.W. Hirsch and S. Smale, Differential equations,
dynamical systems, and linear algebra, vol. 60 of *Pure and Applied
Mathematics*. Academic Press [A subsidiary of Harcourt Brace Jovanovich,
Publishers], New York, London (1974).

[11]
Ikeda, M., Maeda, H. and Kodama, S., Stabilization of linear
systems. *SIAM J. Control*
10 (1972)
716–729.

[12]
Ikeda, M., Maeda, H. and Kodama, S., Estimation and feedback in
linear time-varying systems: a deterministic theory.
*SIAM J. Control*
13 (1975)
304–326.

[13]
Kano, H. and Nishimura, T., Periodic solution of matrix
Riccati equations with detectability and stabilizability.
*Internat. J. Control*
29 (1979)
471–487.

[14]
Kano, H. and Nishimura, T., Controllability,
stabilizability, and matrix Riccati equations for periodic systems.
*IEEE Trans. Automat. Control*
30 (1985)
1129–1131.

[15]
Leonov, G.A., The Brockett stabilization
problem (in Russian). *Avtomat. i Telemekh* (2001)
190–193; *translation in Autom. Remote Control*
**62** (2001) 847–849.

[16] X. Li, J. Yong and Y. Zhou, *Control
Theory* (in Chinese). Higher Education Press of P.R. China, Beijing (2009).

[17]
Lyapunov, A.M., The general problem of the
stability of motion, Translated from Edouard Davaux’s French translation (1907) of the
1892 Russian original and edited by A.T. Fuller. With an introduction and preface by
Fuller, a biography of Lyapunov by V.I. Smirnov, and a bibliography of Lyapunov’s works
compiled by J.F. Barrett. Lyapunov centenary issue. Reprint of Internat.
*J. Control*
55 (1992)
521–790.

[18] I.G. Malkin, *The stability theory of
motion* (in Russian). Nauk Press, Moscow (1966).

[19]
Penrose, R., A Generalized inverse for
matrices. *Proc. Cambridge Philos. Soc.*
51 (1955)
406–413.

[20] E.D. Sontag, Mathematical control theory:
Deterministic finite-dimensional systems, 2nd edition, vol. 6 of *Texts in Applied
Mathematics*. Springer-Verlag, New York (1998).

[21] W.H. Steeb and Y. Hardy, *Matrix calculus
and Kronecker product, A practical approach to linear and multilinear algebra*,
Second edition. World Scientific Publishing Co. Pte. Ltd., Hackensack (2011).

[22] W. Walter, Ordinary differential equations,
Translated from the sixth German (1996) edition by Russell Thompson, vol. 182 of
*Graduate Texts in Mathematics Readings in Mathematics*. Springer-Verlag,
New York (1998).

[23] K. Yosida, Functional analysis, 6th edition, vol.
123 of *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]*. Springer-Verlag, Berlin, New York (1980).