[1]
Anantharaman-Delaroche, C.. Systèmes dynamiques non commutatifs et moyennabilité. Math. Ann.
279(2) (1987), 297–315.

[2]
Antolin, Y. and Dreesen, D.. The Haagerup property is stable under graph products. *Preprint*, 2013, arXiv:1305.6748. [3]
Atkinson, S.. Graph products of completely positive maps. J. Operator Theory
81(1) (2019), 133–159.

[4]
Baudisch, A.. Subgroups of semifree groups. Acta Math. Acad. Sci. Hungar.
38(1–4) (1981), 19–28.

[5]
Bédos, E. and Conti, R.. Negative definite functions for *C*
^{∗} -dynamical systems. Positivity
21(4) (2017), 1625–1646.

[6]
Boca, F.. Free products of completely positive maps and spectral sets. J. Funct. Anal.
97(2) (1991), 251–263.

[7]
Brown, N. P. and Ozawa, N..
*C*
^{∗} -Algebras and Finite-dimensional Approximations
*(Graduate Studies in Mathematics, 88)*
. American Mathematical Society, Providence, RI, 2008.

[8]
Caspers, M. and Fima, P.. Graph products of operator algebras. J. Noncommut. Geom.
11(1) (2017), 367–411.

[9]
Charney, R.. An introduction to right-angled Artin groups. Geom. Dedicata
125 (2007), 141–158.

[10]
Cherix, P.-A., Cowling, M., Jolissaint, P., Julg, P. and Valette, A.. Groups with the Haagerup Property
*(Modern Birkhäuser Classics)*
. Birkhäuser/Springer, Basel, 2001, Gromov’s a-T-menability, paperback reprint of the 2001 edition.

[11]
Chiswell, I. M.. Right-angled Coxeter groups. Low-dimensional Topology and Kleinian Groups (Coventry/Durham, 1984)
*(London Mathematical Society Lecture Note Series, 112)*
. Cambridge University Press, Cambridge, 1986, pp. 297–304.

[12]
Choda, M.. Group factors of the Haagerup type. Proc. Japan Acad. Ser. A Math. Sci.
59(5) (1983), 174–177.

[13]
Combes, F.. Crossed products and Morita equivalence. Proc. Lond. Math. Soc. (3)
49(2) (1984), 289–306.

[14]
Connes, A. and Takesaki, M.. The flow of weights on factors of type III. Tôhoku Math. J. (2)
29(4) (1977), 473–575.

[15]
Dadarlat, M. and Guentner, E.. Constructions preserving Hilbert space uniform embeddability of discrete groups. Trans. Amer. Math. Soc.
355(8) (2003), 3253–3275.

[16]
Dong, Z.. Haagerup property for *C*
^{∗} -algebras. J. Math. Anal. Appl.
377(2) (2011), 631–644.

[17]
Dong, Z. and Ruan, Z.-J.. A Hilbert module approach to the Haagerup property. Integral Equations Operator Theory
73(3) (2012), 431–454.

[18]
Droms, C.. Graph groups, coherence, and three-manifolds. J. Algebra
106(2) (1987), 484–489.

[19]
Droms, C.. Subgroups of graph groups. J. Algebra
110(2) (1987), 519–522.

[20]
Droms, C.. Isomorphisms of graph groups. Proc. Amer. Math. Soc.
100(3) (1987), 407–408.

[21]
Green, E. R.. Graph products of groups. *PhD Thesis*, University of Leeds, 1990.

[22]
Haagerup, U.. An example of a nonnuclear *C*
^{∗} -algebra, which has the metric approximation property. Invent. Math.
50(3) (1978–1979), 279–293.

[23]
Nica, A. and Speicher, R.. Lectures on the Combinatorics of Free Probability
*(London Mathematical Society Lecture Note Series, 335)*
. Cambridge University Press, Cambridge, 2006.

[24]
Popa, S.. Some rigidity results for non-commutative Bernoulli shifts. J. Funct. Anal.
230(2) (2006), 273–328.

[25]
Reckwerdt, E.. Weak amenability is stable under graph products. J. Lond. Math. Soc. (2)
96(1) (2017), 133–155.

[26]
Takesaki, M.. Theory of Operator Algebras I
*(Operator Algebras and Non-Commutative Geometry, 5, Encyclopaedia of Mathematical Sciences, 124)*
. Springer, Berlin, 2002, reprint of the first (1979) edition.

[27]
Tu, J.-L.. La conjecture de Baum–Connes pour les feuilletages moyennables.
*K*-Theory
17(3) (1999), 215–264.

[28]
Valette, A.. Weak amenability of right-angled Coxeter groups. Proc. Amer. Math. Soc.
119(4) (1993), 1331–1334.

[29]
Wise, D. T.. From Riches to Raags: 3-Manifolds, Right-Angled Artin Groups, and Cubical Geometry
*(CBMS Regional Conference Series in Mathematics, 117)*
. American Mathematical Society, Providence, RI, 2012, published for the Conference Board of the Mathematical Sciences, Washington, DC.