Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-02T18:31:39.868Z Has data issue: false hasContentIssue false

Lorenz attractors through Šil'nikov-type bifurcation. Part I

Published online by Cambridge University Press:  19 September 2008

Marek Ryszard Rychlik
Affiliation:
The Institute for Advanced Study, School of Mathematics, Princeton, NJ 08540, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The main result of this paper is a construction of geometric Lorenz attractors (as axiomatically defined by J. Guckenheimer) by means of an Ω-explosion. The unperturbed vector field on ℝ3 is assumed to have a hyperbolic fixed point, whose eigenvalues satisfy the inequalities λ1 > 0, λ2 > 0, λ3 > 0 and |λ2|>|λ1|>|λ3|. Moreover, the unstable manifold of the fixed point is supposed to form a double loop. Under some other natural assumptions a generic two-parameter family containing the unperturbed vector field contains geometric Lorenz attractors.

A possible application of this result is a method of proving the existence of geometric Lorenz attractors in concrete families of differential equations. A detailed discussion of the method is in preparation and will be published as Part II.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

References

REFERENCES

[1]Abraham, R. & Robin, J.. Transversal Mappings and Flows, W. A. Benjamin: New York, Amsterdam, 1967.Google Scholar
[2]Arnol'd, V. I.. Geometrical Methods in the Theory of Ordinary Differential Equations, English trans. ed., Levi, M., Springer-Verlag: New York, 1983.CrossRefGoogle Scholar
[3]Bowen, R.. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Mathematics 470. Springer-Verlag: Berlin-Heidelberg-New York, 1975.CrossRefGoogle Scholar
[4]Guckenheimer, J.. A Strange, Strange Attractor. The Hopf bifurcations and its applications, J. E. Marsden and M. McCracken, with contributions by Chernoff, P. et al. , Springer-Verlag: New York, 1976.CrossRefGoogle Scholar
[5]Guckenheimer, J. & Williams, R. F.. Structural stability of the Lorenz attractor. Pub. Math. I.H.E.S. 50 (1979), 5972.CrossRefGoogle Scholar
[6]Hirsch, M. W., Pugh, C. C. & Shub, M.. Invariant manifolds. Lecture Notes in Mathematics. Springer-Verlag: Berlin, New York, 1977.CrossRefGoogle Scholar
[7]Irwin, M. C.. On the stable manifold theorem. Bull. London Math. Soc. 2 (1970), 196198.CrossRefGoogle Scholar
[8]Keller, G.. Generalized bounded variation and applications to piecewise monotonic transformations. Zeitschrifte Wahrsch. Verw. Gebiete 69 (1985), 461478.CrossRefGoogle Scholar
[9]Leontovich, E.. About creation of limit cycles from a separatrix. Dokl. Akad. Nauk USSR LXXVIII, No. 4 (1951).Google Scholar
[10]Lorenz, E. N.. Deterministic nonperiodic flow. J. Atmos. Sci. 20 (1963), 130141.2.0.CO;2>CrossRefGoogle Scholar
[11]Rand, D.. The topological classification of Lorenz attractors. Math. Proc. Camb. Phil. Soc. 83 (1978), 451460.CrossRefGoogle Scholar
[12]Robinson, C.. Differentiability of the stable foliation for the model Lorenz equations. Lecture Notes in Mathematics 898, Dynamical Systems and Turbulence, pp. 302315. eds., Rand, D. & Young, L. S.. Springer-Verlag: New York, 1981.Google Scholar
[13]Robinson, C.. Transitivity and invariant measures for the geometric model of the Lorenz equations. Ergod. Th. & Dynam. Sys. 4 (1984), 605611.CrossRefGoogle Scholar
See also Errata to ‘Transitivity and invariant measures for the geometric model of the Lorenz equations’. Ergod. Th. & Dynam. Sys. 6 (1986), 323.CrossRefGoogle Scholar
[14]Roussarie, R.. Modeles locaux de champs et de formes. Astérisque 30 (1975).Google Scholar
[15]Rychlik, M., Invariant measures and the variational principle for Lozi mappings. PhD dissertation, Univ. of Calif., Berkeley, 1983.Google Scholar
[16]Šil'nikov, L. P., A case of the existence of a denumerable set of periodic motions. Sov. Math. Dokl. 6 (1965), 163166.Google Scholar
[17]Šil'nikov, L. P.. On the generation of a periodic motion from trajectories doubly asymptotic to an equilibrium of saddle type. Math. USSR, Sbornik 6 (3) (1968), 427438.CrossRefGoogle Scholar
[18]Šil'nikov, L. P.. A contribution to the problem of the structure of a rough equilibrium state of saddle-focus type. Math. USSR, Sbornik 10 (1) (1970), 91102.CrossRefGoogle Scholar
[19]Sparrow, C.. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer-Verlag: New York, Heidelberg, Berlin, 1982.CrossRefGoogle Scholar
[20]Sternberg, S.. On the structure of local homeomorphisms of euclidean n-space II. Amer. J. Math. 80 (1958), 623631.CrossRefGoogle Scholar
[21]Ushiki, S., Oka, H. & Kokubu, H.. Existence of strange attractors in the unfolding of a degenerate singularity of a translation invariant vector field, (French). C.R. Acad. Sci. Paris 298, Ser. I. Math., no. 3 (1984), 3942.Google Scholar
[22]Williams, R. F.. The structure of Lorenz attractors. Turbulence seminar (Univ. of Calif., Berkeley, 1976–1977), eds. Bernard, P., Lecture Notes in Mathematics 615, 93113. Springer-Verlag, Berlin, New York, 1977.Google Scholar
[23]Williams, R. F.. The bifurcation space of the Lorenz attractor. Bifurcation theory and its applications in scientific disciplines. (Papers, Conf., New York, 1977) pp. 393399. Ann. New York Acad. Sci. 316, New York Acad. Sci., 1979.Google Scholar
[24]Williams, R. F.. Structure of Lorenz attractors. Publications Mathématiques, I.H.E.S. 50 (1979), 73100.CrossRefGoogle Scholar