Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-11T10:10:04.595Z Has data issue: false hasContentIssue false

Equilibrium measures for two-sided shift spaces via dimension theory

Published online by Cambridge University Press:  10 September 2024

VAUGHN CLIMENHAGA
Affiliation:
Department of Mathematics, University of Houston, Houston, TX 77204, USA (e-mail: climenha@math.uh.edu)
JASON DAY*
Affiliation:
Department of Mathematics, University of Houston, Houston, TX 77204, USA (e-mail: climenha@math.uh.edu)
*
e-mail: jjday@uh.edu

Abstract

Given a two-sided shift space on a finite alphabet and a continuous potential function, we give conditions under which an equilibrium measure can be described using a construction analogous to Hausdorff measure that goes back to the work of Bowen. This construction was previously applied to smooth uniformly and partially hyperbolic systems by the first author, Pesin, and Zelerowicz. Our results here apply to all subshifts of finite type and Hölder continuous potentials, but extend beyond this setting, and we also apply them to shift spaces with synchronizing words.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baladi, V. and Demers, M. F.. On the measure of maximal entropy for finite horizon Sinai billiard maps. J. Amer. Math. Soc. 33(2) (2020), 381449.CrossRefGoogle Scholar
Bertrand, A.. Specification, synchronisation, average length. Coding Theory and Applications (Cachan, 1986) (Lecture Notes in Computer Science, 311). Ed. G. Cohen and P. Godlewski. Springer, Berlin, 1988, pp. 8695.CrossRefGoogle Scholar
Ben Ovadia, S.. Invariant family of leaf measures and the Ledrappier–Young property for hyperbolic equilibrium states. Ergod. Th. & Dynam. Sys. 43(11) (2023), 36033635.CrossRefGoogle Scholar
Bowen, R.. Topological entropy for noncompact sets. Trans. Amer. Math. Soc. 184 (1973), 125136.CrossRefGoogle Scholar
Bowen, R.. Some systems with unique equilibrium states. Math. Systems Theory 8(3) (1974/75), 193202.CrossRefGoogle Scholar
Bowen, R.. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in Mathematics, 470), revised edn. Ed. J.-R. Chazottes. Springer-Verlag, Berlin, 2008; with a preface by D. Ruelle.CrossRefGoogle Scholar
Bowen, R. and Walters, P.. Expansive one-parameter flows. J. Differential Equations 12 (1972), 180193.CrossRefGoogle Scholar
Call, B.. The $\mathrm{K}$ -property for some unique equilibrium states in flows and homeomorphisms. Ergod. Th. & Dynam. Sys. 42(8) (2022), 25092532.CrossRefGoogle Scholar
Climenhaga, V. and Day, J.. Leaf measures and entropy for dispersing billiards. Manuscript in preparation.Google Scholar
Climenhaga, V.. Specification and towers in shift spaces. Comm. Math. Phys. 364(2) (2018), 441504.CrossRefGoogle Scholar
Climenhaga, V.. An improved non-uniform specification result. Blog post, 2022. https://vaughnclimenhaga.wordpress.com/2022/06/06/an-improved-non-uniform-specification-result/.Google Scholar
Climenhaga, V., SRB and equilibrium measures via dimension theory. A Vision for Dynamics in the 21st Century—The Legacy of Anatole Katok. Ed. D. Damjanovic, B. Hasselblatt, A. Gogolev and Y. Pesin. Cambridge University Press, Cambridge, 2024, pp. 94138.Google Scholar
Climenhaga, V. and Pavlov, R.. One-sided almost specification and intrinsic ergodicity. Ergod. Th. & Dynam. Sys. 39(9) (2019), 24562480.CrossRefGoogle Scholar
Climenhaga, V., Pesin, Y. and Zelerowicz, A.. Equilibrium states in dynamical systems via geometric measure theory. Bull. Amer. Math. Soc. (N.S.) 56(4) (2019), 569610.CrossRefGoogle Scholar
Climenhaga, V., Pesin, Y. and Zelerowicz, A.. Equilibrium measures for some partially hyperbolic systems. J. Mod. Dyn. 16 (2020), 155205.CrossRefGoogle Scholar
Climenhaga, V. and Thompson, D. J.. Equilibrium states beyond specification and the Bowen property. J. Lond. Math. Soc. (2) 87(2) (2013), 401427.CrossRefGoogle Scholar
Climenhaga, V. and Thompson, D. J.. Unique equilibrium states for flows and homeomorphisms with non-uniform structure. Adv. Math. 303 (2016), 745799.CrossRefGoogle Scholar
Glasner, E.. Ergodic Theory via Joinings (Mathematical Surveys and Monographs, 101). American Mathematical Society, Providence, RI, 2003.CrossRefGoogle Scholar
Hamenstädt, U.. A new description of the Bowen–Margulis measure. Ergod. Th. & Dynam. Sys. 9(3) (1989), 455464.CrossRefGoogle Scholar
Hasselblatt, B.. A new construction of the Margulis measure for Anosov flows. Ergod. Th. & Dynam. Sys. 9(3) (1989), 465468.CrossRefGoogle Scholar
Haydn, N. T. A.. Canonical product structure of equilibrium states. Random Comput. Dyn. 2(1) (1994), 7996.Google Scholar
Ledrappier, F.. Mesures d’équilibre d’entropie complètement positive. Dynamical Systems, Vol. II—Warsaw (Astérisque, 50). Société Mathématique de France, Paris, 1977, pp. 251272.Google Scholar
Leplaideur, R.. Local product structure for equilibrium states. Trans. Amer. Math. Soc. 352(4) (2000), 18891912.CrossRefGoogle Scholar
Margulis, G. A.. Certain measures that are connected with U-flows on compact manifolds. Funkcional. Anal. i Priložen. 4(1) (1970), 6276.Google Scholar
Pesin, Y. B. and Pitskel’, B. S.. Topological pressure and the variational principle for noncompact sets. Funktsional. Anal. i Prilozhen. 18(4) (1984), 5063, 96.CrossRefGoogle Scholar
Pacifico, M. J., Yang, F. and Yang, J.. Existence and uniqueness of equilibrium states for systems with specification at a fixed scale: an improved Climenhaga–Thompson criterion. Nonlinearity 35(12) (2022), 59635992.CrossRefGoogle Scholar
Walters, P.. Invariant measures and equilibrium states for some mappings which expand distances. Trans. Amer. Math. Soc. 236 (1978), 121153.CrossRefGoogle Scholar
Walters, P.. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79). Springer-Verlag, New York, 1982.CrossRefGoogle Scholar