Skip to main content Accessibility help
×
Home

Bohr density of simple linear group orbits

  • ROGER HOWE (a1) and FRANÇOIS ZIEGLER (a2)

Abstract

We show that any non-zero orbit under a non-compact, simple, irreducible linear group is dense in the Bohr compactification of the ambient space.

Copyright

References

Hide All
[B87]Berger, M.. Geometry. I. Springer-Verlag, Berlin, 1987.
[B74]Blum, J. and Eisenberg, B.. Generalized summing sequences and the mean ergodic theorem. Proc. Amer. Math. Soc. 42 (1974), 423429.
[B04]Bourbaki, N.. Integration. I. Springer, Berlin, 2004, Chs 1–6.
[D82]Dixmier, J.. C -algebras. North-Holland, Amsterdam, 1982.
[G07]Galindo, J., Hernández, S. and Wu, T.-S.. Recent results and open questions relating Chu duality and Bohr compactifications of locally compact groups. Open Problems in Topology. II. Ed. Pearl, E.. Elsevier, Amsterdam, 2007, pp. 407422.
[G79]Graham, C. C. and Carruth McGehee, O.. Essays in Commutative Harmonic Analysis. Springer, New York, 1979.
[H63]Hewitt, E. and Ross, K. A.. Abstract Harmonic Analysis. Vol. 1 Springer, Berlin, 1963.
[K73a]Katznelson, Y.. Sequences of integers dense in the Bohr group. Proc. Roy. Inst. Tech. (Stockholm) (June 1973) 7986, available at http://math.stanford.edu/~katznel/.
[K02]Knapp, A. W.. Lie Groups beyond an Introduction. Birkhäuser, Boston, 2002.
[K73b]Kostant, B.. On convexity, the Weyl group and the Iwasawa decomposition. Ann. Sci. Éc. Norm. Sup. (4) 6 (1973), 413455.
[P83]Petersen, K.. Ergodic Theory. Cambridge University Press, Cambridge, 1983.
[R05]Rogers, K. M.. Sharp van der Corput estimates and minimal divided differences. Proc. Amer. Math. Soc. 133 (2005), 35433550.
[S93]Stein, E. M.. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, NJ, 1993.
[Z93]Ziegler, F.. Subsets of ${R}^{n} $ which become dense in any compact group. J. Algebraic Geom. 2 (1993), 385387.
[Z96]Ziegler, F.. Méthode des orbites et représentations quantiques. PhD Thesis, Université de Provence, Marseille, 1996, arXiv:1011.5056.

Bohr density of simple linear group orbits

  • ROGER HOWE (a1) and FRANÇOIS ZIEGLER (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed