Skip to main content Accessibility help

The rapakivi granites of S Greenland—crustal melting in response to extensional tectonics and magmatic underplating

  • P. E. Brown (a1), T. J. Dempster (a2), T. N. Harrison (a3) and D. H. W. Hutton (a4)


Early Proterozoic rapakivi intrusions in S Greenland occur as thick sheets which have ramp–flat geometry and were intruded along the median planes of active ductile extensional shear zones. These shear zones and their intrusions were linked via transfer zones in a major three-dimensional framework. At high structural levels (c. 6 km) the rapakivi intrusions developed thermal aureoles which overprint the regional assemblages, whereas at deeper levels in the regional structure they are contemporaneous with regional metamorphism. Thermobarometry on the regional and contact assemblages indicates low pressure granulite facies conditions (200–400 MPa, 650°-800°C) suggesting very high thermal gradients. The rapakivi suite and associated norites have low initial 87Sr/86Sr together with positive εNd values, indicating the involvement of predominantly young crust and/or mantle component in the generation of the igneous suite. It is considered that the voluminous norites are closely related to the mafic melts which underplated the juvenile crust to trigger the generation of the monzonitic rapakivi suite. Taken together, the data are consistent with a model of Proterozoic lithospheric extension, thinning of relatively juvenile continental crust and compression of mantle isotherms, resulting in high crustal heat flow, mafic underplating, and crustal melting with emplacement of magmas along a linked network of extensional shear zones.



Hide All
Allart, J. H. 1976. The Ketilidian mobile belt in South Greenland. In Escher, A. & Watt, W. S. (eds) Geology of Greenland, 121–51. GRONL GEOL UNDERS COPENHAGEN.
Bridgwater, D., Sutton, J. & Watterson, J. 1974. Crustal downfolding associated with igneous activity. TECTONOPHYSICS 21, 5777.
Collins, W. J., Beams, S. D., White, A. J. R. & Chappell, B. W. 1982. Nature and origin of A-type granites with particular reference to south-eastern Australia. CONTRIB MINERAL PETROL 80, 189200.
Creaser, R. A., Price, R. C. & Wormald, R. J. 1991. A-type granites revisted: Assessment of a residual-source model. GEOLOGY 19, 163–6.
Dawes, P. R. 1970. The plutonic history of the Tasiussaq area, South Greenland, with special reference to a high-grade gneiss complex. BULL GRONL GEOL UNDERS 88.
Dempster, P. J., Hutton, D. H. W., Harrison, T. N., Brown, P. E. & Jenkin, G. R. T. 1991a. Textural evolution of rapakivi granites, south Greenland—Sr, O and H isotopic investigations. CONTRIB MINERAL PETROL 107, 459–71.
Dempster, T. J., Harrison, T. N., Brown, P. E. & Hutton, D. H. W. 1991b. Low-pressure granulites from the Ketilidian mobile belt of south Greenland. J PETROL 32, 9791004.
Emslie, R. F. 1991. Granitoids of rapakivi granite—anorthosite and related associations. PRECAMBRIAN RES 51, 173–92.
Finch, A. A., Reavy, R. J., Harrison, T. N. & Brown, P. E. 1990. Rapakivi granites, south Greenland: hydrothermal alteration of igneous layering. J GEOL SOC 147, 739–42.
Gulson, B. L. & Krogh, T. E. 1975. Evidence of multiple intrusion, possible resetting of U-Pb ages, and new crystallisation of zircons in the post-tectonic intrusions (Rapakivi granites) and gneisses from south Greenland. GEOCHIM COSMOCHIM ACTA 39, 6582.
Harrison, T. N., Parsons, I. & Brown, P. E. 1990a. Fayalite-bearing rapakivi granites from the Prins Christian Sund pluton, south Greenland. MINERAL MAG 54, 5764.
Harrison, T. N., Reavy, R. J., Finch, A. A. & Brown, P. E. 1990b. Co-existing mafic and felsic magmas in the early Proterozoic rapakivi granite suite of Southern Greenland. BULL GEOL SOC DENMARK 38, 53–8.
Holland, T. J. B. & Powell, R. 1990. An enlarged and updated internally consistent thermodynamic data set with uncertainties and correlations: the system K2O–Na2O–CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2. J METAM GEOL 8, 89124.
Huppert, H. E. & Sparks, R. S. 1988. The generation of granitic magmas by intrusion of basalt into continental crust. J PETROL 29, 599624.
Hutton, D. H. W. 1988. Granite emplacement mechanisms and tectonic controls: inferences from deformation studies. TRANS R SOC EDINBURGH EARTH SCI 79, 245–55.
Hutton, D. H. W., Dempster, T. J., Brown, P. E. & Becker, S. M. 1990. A new mechanism of granite emplacement: rapakivi intrusions in active extensional shear zones. NATURE 343, 452–4.
Johannes, W. & Holtz, F. 1990. Formation and composition of H2O-undersaturated granitic melts. In Ashworth, J. R. & Brown, M. (eds) High temperature metamorphism and crustal anatexis, 87104. London: Unwin Hyman.
Nekvasil, H. 1988. Calculated effect of anorthite component on the crystallisation paths of H2O-undersaturated haplogranitic melts. AM MINERAL 73, 966–81.
O'Connor, J. T. 1965. A classification for quartz-rich igneous rocks based on feldspar ratios. GEOL SURV AM Prof Pap 525–B, 7984.
Patchett, P. J. & Bridgwater, D. 1984. Origin of continental crust of 1–9–1·7Ga age defined by Nd isotopes in the Ketilidian terrain of South Greenland. CONTRIB MINERAL PETROL 87, 311–8.
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J PETROL 25, 956–83.
Powell, R. & Holland, T. J. S. 1988. An internally consistent thermodynamic data set with uncertainties and correlations: 3 Applications to Geobarometry, worked examples and a computer programme. J METAM GEOL 6, 173204.
Watterson, J. 1978. Proterozoic intraplate deformation in the light of South-east Asian neotectonics. NATURE 273, 636–40.
Whalen, J. B., Currie, K. L. & Chappell, B. W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. CONTRIB MINERAL PETROL 95, 407–19.
Windley, B. F. 1991. Early Proterozoic collision tectonics, and rapakivi granites in an extensional thrust-thickened crust: the Ketilidian orogen, South Greenland. TECTONOPHYSICS 195, 110.


The rapakivi granites of S Greenland—crustal melting in response to extensional tectonics and magmatic underplating

  • P. E. Brown (a1), T. J. Dempster (a2), T. N. Harrison (a3) and D. H. W. Hutton (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed