Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-17T00:15:26.815Z Has data issue: false hasContentIssue false

Granitic magmatism and metallogeny of southwestern North America

Published online by Cambridge University Press:  03 November 2011

Mark D. Barton
Affiliation:
Mark D. Barton, Department of Geosciences, University of Arizona, Tucson, AZ 85721,USA. E-mail: bartonfajgeo.@arizona.edu

Abstract:

In southwestern North America, late Palaeozoic through Cenozoic granitoids and their related mineral deposits show consistent patterns that can be interpreted in terms of combined provincial, exposure and process controls. Voluminous Cordilleran magmatism began in the Permian and continued with few major interruptions through the Mesozoic and Cenozoic, reaching maximum fluxes in the mid-Jurassic, Late Cretaceous and Oligocene. Two distinctive types of broad-scale igneous suites formed. The first type consists of calc-alkaline to alkaline suites that vary regularly with time from early intermediate-mafic centres to late felsic centres over intervals lasting 20–50 Ma. These suites formed during periods of stable convergence and compressional tectonics, most notably in the late Mesozoic and early–mid-Cenozoic. The second type is compositionally varied, but shows no obvious secular variation in composition. This type formed during neutral to extensional tectonics in the mid-Mesozoic and the mid- to late Cenozoic. Regional (west to east) and secular (old to young) changes from calcic to alkalic compositions do not correspond to basement types; they point to tectonic rather than crustal controls on magmatic evolution, although basement signatures are clearly transmitted in isotopic systematics. Contrasting types of intrusive centres formed in the same lithospheric columns, suggesting that variability reflects thermal and stress regimes, subcrustal magma flux and crustal thickness. Simple thermal and mechanical models of limits on assimilation and magma uprise are broadly consistent with these patterns.

Igneous-related mineralisation is ubiquitous where epizonal environments are preserved, thus preservation (and exposure) form the first-order filter on metallogeny. Mineralisation includes porphyry, skarn, epithermal, replacement and syngenetic deposits of widely varying styles, metal contents and links to magmatic heat and materials. Metal contents and alteration styles correlate closely with igneous compositions and are broadly independent of setting, although systematic regional variations in metal ratios are documented. Ore element suites vary from Cu–Au–Fe associated with (quartz) dioritic to monzonitic intrusive centres through Cu–Zn–Mo–Pb–Ag–W–Au associated with broadly granodioritic centres, and finally to F–Mo–Zn–W–Ag–Be associated with metaluminous to strongly peraluminous granitic centres. A model that includes both composition and process controls rationalises this igneous correlation and the lack of strong regional control. Key features are (1) mineralogical controls on fluid compositions and (2) the efficacy of magmatic processes in producing voluminous ore-forming aqueous fluids. This interpretation is supported by field relationships, igneous petrographic and isotopic data, and theoretical considerations.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

7. References

Ague, J. J.&Brimhall, G. H. 1988. Regional variations in bulk chemistry, mineralogy, and the compositions of mafic and accessory minerals in the batholiths of California. GEOL SOC AM BULL 100, 891911.2.3.CO;2>CrossRefGoogle Scholar
Albers, J. P. 1981. A lithologic-tectonic framework for the metallogenic provinces of California. ECON GEOL 76, 765–90.CrossRefGoogle Scholar
Albino, G. V. 1995. Porphyry copper deposits of the Great Basin—Nevada, Utah, and adjacent California. In Pierce, F. W.&Bolm, J. G. (eds) Porphyry copper deposits of the American Cordillera. ARIZONA GEOL SOC DIG 20, 267–96.Google Scholar
Anderson, J. L. 1990. The nature and origin of Cordilleran magmatism. GEOL SOC AM MEM 174.Google Scholar
Anderson, J. L.&Morrison, J. 1992. The role of anorogenic granites in the Proterozoic crustal development of North America. In Condie, K. C. (ed.) Proterozoic crustal evolution. DEV PRECAMBRIAN GEOL 10, 263–99.CrossRefGoogle Scholar
Anthony, E. Y.&Titley, S. R. 1988. Progressive mixing of isotopic reservoirs during magma genesis at the Sierrita porphyry copper deposit, Arizona; inverse solutions. GEOCHIM COSMOCHIM ACTA 52, 2235–50.CrossRefGoogle Scholar
Armstrong, R. L. 1982. Cordilleran metamorphic core complexes—from Arizona to southern Canada. ANNU REV EARTH PLANET SCI 10, 119–54.CrossRefGoogle Scholar
Asmerom, Y., Patchett, P. J.&Damon, P. E. 1991. Crust–mantle interaction in continental arcs: inferences from the Mesozoic arc in the southwestern US. CONTRIB MINERAL PETROL 107, 124–34.CrossRefGoogle Scholar
Barnes, C. G., Petersen, S. W., Kistler, R. W., Prestvik, T.&Sundvoll, B. 1992. Tectonic implications of isotopic variation among Jurassic and Early Cretaceous plutons, Klamath Mountains. GEOL SOC AM BULL 104, 117–26.2.3.CO;2>CrossRefGoogle Scholar
Barton, M. D. 1987. Lithophile element mineralization associated with Late Cretaceous two-mica granites in the Great Basin. GEOLOGY 15, 337–40.2.0.CO;2>CrossRefGoogle Scholar
Barton, M. D. 1990. Cretaceous magmatism, mineralization and metamorphism in the east-central Great Basin. In Anderson, J. L. (ed.) The nature and origin of Cordilleran magmatism. GEOL SOC AM MEM 174, 283302.Google Scholar
Barton, M. D.&Hanson, R. B. 1989. Magmatism and the development of low-pressure metamorphic belts: implications from the western United States and thermal modeling. GEOL SOC AM BULL 101, 1051–65.2.3.CO;2>CrossRefGoogle Scholar
Barton, M. D.&Johnson, D. A. 1996. An evaporitic-source model for igneous-related Fe-oxide(–REE–Cu–Au–U) mineralization. GEOLOGY 24, 259–62.2.3.CO;2>CrossRefGoogle Scholar
Barton, M. D.&Trim, H. E. 1991. Late Cretaceous two-mica granites and lithophile-element mineralization in the Great Basin. In Schafer, R. W.&Wilkinson, W. H. (eds) Geology and ore deposits of the Great Basin, Geological Society of Nevada Symposium Proceedings, 529–38. Reno: Geological Society of Nevada.Google Scholar
Barton, M. D., Battles, D. A., Bebout, G. E., Capo, R. C, Christensen, J. N., Davis, S. R., Hanson, R. B., Michelsen, C. J.&Trim, H. 1988. Mesozoic contact metamorphism in the Western United States. In Ernst, W. G. (ed.) Metamorphism and crustal evolution, western conterminous United States, Rubey Volume VII, 110–78. Englewood Cliffs: Prentice Hall.Google Scholar
Barton, M. D., Staude, J-M., Snow, E. A.&Johnson, D. A. 1991. Aureole systematics. In Kerrick, D. M. (ed.) Contact metamorphism. REV MINERAL 26, 723847.Google Scholar
Barton, M. D., Ghidotti, G. A., Holden, P.&Grossman, J. N. 1994. Petrochemical characteristics of the strongly peraluminous endmember of Cretaceous magmatism in the Great Basin: the Birch Creek pluton. GEOL SOC AM ABSTR PROGRAMS 26, 369.Google Scholar
Barton, M. D., Staude, J-M. G., Zürcher, L.&Megaw, P. K. M. 1995. Porphyry copper and other intrusion-related mineralization in Mexico. In Pierce, F. W.&Bolm, J. G. (eds) Porphyry copper deposits of the American Cordillera. ARIZONA GEOL SOC DIG 20, 487524.Google Scholar
Bateman, P. C. 1965. Geology and tungsten mineralization of the Bishop district, California. US GEOL SURV PROF PAP 470.Google Scholar
Bateman, P. C. 1992. Plutonism in the central part of the Sierra Nevada batholith, California. US GEOL SURV PROF PAP 1483.Google Scholar
Battles, D. A.&Barton, M. D. 1995. Arc-related sodic hydrothermal alteration in the western US. GEOLOGY 23, 913–6.2.3.CO;2>CrossRefGoogle Scholar
Bennett, V. C.&DePaolo, D. J. 1987. Proterozoic crustal history of the western United States as determined by neodymium isotopic mapping. GEOL SOC AM BULL 99, 674–85.2.0.CO;2>CrossRefGoogle Scholar
Blevin, P. L.&Chappell, B. W. 1992. The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. TRANS R SOC EDINBURGH EARTH SCI 83, 305–17.Google Scholar
Bohlke, J. K.&Kistler, R. W. 1986. Rb–Sr, K–Ar, and stable isotope evidence for the ages and sources of fluid components in the northern Sierra Nevada foothills metamorphic belt, California. ECON GEOL 81, 296322.CrossRefGoogle Scholar
Bookstrom, A. A. 1990. Igneous rocks and carbonate-hosted ore deposits of the central Colorado Mineral Belt. ECON GEOL MONOGR 7, 4565.Google Scholar
Brown, G. C, Thorpe, R. S.&Webb, P. C. 1984. The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. J GEOL SOC LONDON 141, 369–77.CrossRefGoogle Scholar
Burchfiel, B. C, Cowan, D. S.&Davis, G. A. 1992. Tectonic overview of the Cordilleran orogen in the western United States. In Burchfield, B. C, Lipman, P. W.&Zoback, M. L. (eds) The Cordilleran orogen, conterminous US. The Geology of North America, Vol. G–3, 407–79. Boulder: Geological Society of America.Google Scholar
Burnham, C. W. 1979. Magmas and hydrothermal fluids. In Barnes, H. L. (ed.) Geochemistry of hydrothermal ore deposits, 71136. New York: Holt, Rinehart and Winston.Google Scholar
Burnham, C. W.&Ohmoto, H. 1980. Late-stage processes of felsic magmatism. In Ishihara, S.&Takenouchi, S. (eds) Granitic magmatism and related mineralization. MIN GEOL SPEC ISSUE 8, 111.Google Scholar
Campa, M. F.&Coney, P. J. 1983. Tectono-stratigraphic terranes and mineral resource distributions in Mexico. CAN J EARTH SCI 20, 1040–51.CrossRefGoogle Scholar
Candela, P. A. 1989. Magmatic ore-forming fluids: thermodynamic and mass-transfer calculations of metal concentrations. REV ECON GEOL 4, 203–21.Google Scholar
Candela, P. A. 1991. Physics of aqueous phase evolution in plutonic environments. AM MINERAL 76, 1081–91.Google Scholar
Candela, P. A. 1992. Controls on ore metal ratios in granite-related ore deposits: an experimental and computational approach. TRANS R SOC EDINBURGH EARTH SCI 83, 317–26.Google Scholar
Candela, P. A.&Piccoli, P. M. 1995. Model ore-metal partitioning from melts into vapor and vapor/brine mixtures. In Thompson, J. F. H. (ed.) Granites, fluids, and ore deposits. MINERAL ASSOC CAN 23, 101–28.Google Scholar
Carmichael, I. S., Turner, F. J.&Verhoogen, J. 1974. Igneous petrology. New York: McGraw-Hill.Google Scholar
Cathles, L. M. 1981. Fluid flow and genesis of hydrothermal ore deposits. In Skinner, B. J. (ed.) 75th Anniversary Volume. ECON GEOL 424–57.Google Scholar
Centeno, G. E., Ruiz, J., Coney, P. J., Patchett, P. J.&Ortega, G. F. 1993. Guerrero Terrane of Mexico; its role in the Southern Cordillera from new geochemical data. GEOLOGY 21, 419–22.2.3.CO;2>CrossRefGoogle Scholar
Chen, J.&Moore, J. 1981. Uranium-lead isotopic ages from the Sierra Nevada batholith, California. J GEOPHYS RES 87, 4761–84.CrossRefGoogle Scholar
Christensen, E.&Lee, D. E. 1986. Fluorine and chlorine in granitoids from the Basin and Range province, western United States. ECON GEOL 81, 1484–94.CrossRefGoogle Scholar
Clark, K. F., Foster, C. T.&Damon, P. E. 1982. Cenozoic mineral deposits and subduction-related magmatic arcs in Mexico. GEOL SOC AM BULL 93, 533–44.2.0.CO;2>CrossRefGoogle Scholar
Coleman, D. S., Frost, T. P.&Glazner, A. F. 1992. Evidence from the Lamarck granodiorite for rapid Late Cretaceous crust formation in California. SCIENCE 258, 1924–6.CrossRefGoogle ScholarPubMed
Coney, P. J. 1989. Structural aspects of suspect terranes and accretionary tectonics in western North America. J STRUCT GEOL 11, 107–25.CrossRefGoogle Scholar
Coney, P. J.&Reynolds, S. J. 1977. Cordilleran BeniofT Zones. NATURE 270, 403–6.CrossRefGoogle Scholar
Criss, R. E.&Taylor, H. P. Jr 1986. Meteoric- hydrothermal systems. In Valley, J. W., Taylor, H. P. Jr.&O'Neil, J. R. (eds) Stable isotopes in high temperature geological processes. REV MINERAL 16, 373424.Google Scholar
Damon, P. E., Shafiqullah, M.&Clark, K. F. 1983. Geochronology of the porphyry copper deposits and related mineralization of Mexico. In Dawson, K. M. (ed.) Symposium; metallogeny and tectonics of the North American Cordillera. CAN J EARTH SCI 20, 1052–71.CrossRefGoogle Scholar
DePaolo, D. J. 1980. Sources of continental crust: neodymium isotope evidence from the Sierra Nevada and Peninsular Ranges. SCIENCE 209, 684–7.CrossRefGoogle ScholarPubMed
DePaolo, D. J. 1981. A neodymium and strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. J GEOPHYS RES 86, 10470–88.CrossRefGoogle Scholar
DePaolo, D. J., Perry, F. V.&Baldridge, W. S. 1992. Crustal versus mantle sources of granitic magmas: a two-parameter model based on neodymium isotope studies. TRANS SOC EDINBURGH EARTH SCI 83, 439–46.Google Scholar
Dickinson, W. R. 1991. Tectonic setting of faulted Tertiary strata associated with the Catalina core complex in southern Arizona. GEOL SOC AM SPEC PAP 264.Google Scholar
Dickinson, W. R.&Snyder, W. S. 1978. Plate tectonics of the Laramide orogeny. GEOL SOC AM MEM 151, 355–66.Google Scholar
Dilles, J. H. 1987. The petrology and geochemistry of the Yerington batholith, Nevada: evidence for the evolution of porphyry copper ore fluids. ECON GEOL 82, 1750–89.CrossRefGoogle Scholar
Einaudi, M. T. 1982. General features and origin of skarns associated with porphyry copper plutons. In Titley, S. R. (ed.) Advances in the geology of the porphyry copper deposits, Southwestern North America, 185209. Tucson: The University of Arizona Press.Google Scholar
Einaudi, M. T., Meinert, L. D.&Newberry, R. J. 1981. Skarn deposits. In Skinner, B. J. (ed.) 75th Anniversary Volume. ECON GEOL 327–91.Google Scholar
Elston, W. E. 1994. Siliceous volcanic centers as guides to mineral exploration: review and summary. ECON GEOL 89, 1662–86.CrossRefGoogle Scholar
Farmer, G. L.&DePaolo, D. J. 1983. Mesozoic and Tertiary granite in the western United States and implications for pre-Mesozoic crustal structure—1. Nd and Sr isotopic studies in the geocline of the northern Great Basin. J GEOPHYS RES 88, 3379–401.CrossRefGoogle Scholar
Farmer, G. L.&DePaolo, D. J. 1984. Origin of Mesozoic and Tertiary granite in the western United States and implications for preMcsozoic crustal structure. 2. Nd and Sr isotopic studies of unmineralized and Cu– and Mo–mineralized granite in the Precambrian craton. J GEOPHYS RES 89, 10 141–60.Google Scholar
Field, C. W.&Fifarek, R. H. 1985. Light stable-isotope systematics in the epithermal environment. In Berger, B. R.&Bethke, P. M. (eds) Geology and geochemistry of epithermal systems. REV ECON GEOL 2, 99128.Google Scholar
Foster, D. A.&Hyndman, D. W. 1990. Magma mixing and mingling between synplutonic mafic dikes and granite in the Idaho–Bitterroot Batholith. In Anderson, J. L. (ed.) The nature and origin of Cordilleran magmatism. GEOL SOC AM MEM 174, 347–58.Google Scholar
Franklin, J. M., Lydon, J. W.&Sangster, D. F. 1981. Volcanic-associated massive sulfide deposits. In Skinner, B. J. (ed.) 75th Anniversary Volume. ECON GEOL 485627.Google Scholar
Gans, P. B., Mahood, G. A.&Schermer, E. 1989. Synextensional magmatism in the Basin and Range province; a case study from the eastern Great Basin. GEOL SOC AM SPEC PAP 233.Google Scholar
Graf, A.&Barton, M. D. 1995. Geology and porphyry-style mineralization of the Cerro de la Gloria stock associated with high-T carbonate-hosted Zn–Cu–Ag(–Pb) mineralization, San Martin district, Zacatecas, Mexico. In International field conference on carbonate-hosted lead–zinc deposits, St Louis Missouri, 115–6.Google Scholar
Guild, P. W. 1981. Metallogenic map of North America: scale 1:5,000,000. Reston: US Geological Survey.Google Scholar
Hanson, R. B. 1995. Hydrodynamics of contact metamorphism. GEOL SOC AM BULL 107, 595611.2.3.CO;2>CrossRefGoogle Scholar
Haxel, G. B., Tosdal, R. M., May, D. J.&Wright, J. E. 1984. Latest Cretaceous and Early Tertiary orogenesis in south-central Arizona: thrust faulting, regional metamorphism and granitic plutonism. GEOL SOC AM BULL 95, 631–53.2.0.CO;2>CrossRefGoogle Scholar
Hedenquist, J. W.&Lowenstern, J. B. 1994. The role of magmas in the formation of hydrothermal ore deposits. NATURE 370, 519–27.CrossRefGoogle Scholar
Helgeson, H. C, Delaney, J. M., Nesbitt, H. W.&Bird, D. K. 1978. Summary and critique of the thermodynamic properties of rock forming minerals. AM J SCI 278–A, 1229.Google Scholar
Hendry, D. A. F., Chivas, A. R., Long, J. V. P.&Reed, S. J. B. 1985. Chemical differences between minerals from mineralizing and barren intrusions from some North American porphyry copper deposits. CONTRIB MINERAL PETROL 89, 317–29.CrossRefGoogle Scholar
Henry, C. D. 1975. Geology and geochronology of the grantic batholithic complex, Sinaloa, Mexico. Ph.D. Dissertation, University of Texas.Google Scholar
Henry, C. D.&Aranda-Gomez, J. J. 1992. The real southern Basin and Range, mid- to late Cenozoic extension in Mexico. GEOLOGY 20, 701–4.2.3.CO;2>CrossRefGoogle Scholar
Hill, R. I.&Silver, L. T. 1988. San Jacinto intrusive complex; 3, constraints on crustal magma chamber hypotheses from strontium isotope heterogeneity. J GEOPHYS RES 93, 10 373–8.Google Scholar
Ilchik, R. P.&Barton, M. D. Evaluation of an amagmatic origin for Carlin-type gold deposits: ECON GEOLOGY, in press.Google Scholar
Ishihara, S. 1981. The granitoid series and mineralization. In Skinner, B. J. (ed.) 75th Anniversary Volume. ECON GEOL 458–84.Google Scholar
Johnson, C. M., Lipman, P. W.&Czmanske, G. K. 1990. H, O, Sr, Nd, and Pb isotope geochemistry of the Latir volcanic field and cogenetic intrusions, New Mexico, and relations between evolution of a continental magmatic center and modifications of the lithosphere. CONTRIB MINERAL PETROL 104, 99124.CrossRefGoogle Scholar
Keith, S. B. 1986. Petrochemical variations in Laramide magmatism and their relationship to Laramide tectonic and metallogenic evolution in Arizona and adjacent regions. In Beatty, B.&Wilkinson, P. A. K. (eds) Frontiers in geology and ore deposits of Arizona and the southwest. ARIZONA GEOL SOC DIG 16, 89101.Google Scholar
King, P. B.&Beikman, H. M. 1974. Geologic map of the United States and Alaska: scale 1:2,500,000. Reston: US Geological Survey.Google Scholar
Kirkham, R. V., Sinclair, W. D..Thorpe, R. I.&Duke, J. M. (eds) 1993. Mineral deposit modeling. GEOL ASSOC CAN SPEC PAP 40.Google Scholar
Kistler, R. W., Chappell, B. W., Peck, D. L.&Bateman, P. C. 1986. Isotopic variation in the Tuolumne Instrusive Suite, central Sierra Nevada, California. CONTRIB MINERAL PETROL 94, 205–20.CrossRefGoogle Scholar
Koons, P. O. 1989. The topographic evolution of collisional mountain belts: a numerical look at the southern Alps, New Zealand. AM J SCI 289, 1041–69.CrossRefGoogle Scholar
Lang, J. R. 1991. Isotopic and geochemical characteristics of Laramide igneous rocks in Arizona. Ph.D. Dissertation, University of Arizona.Google Scholar
Lang, J. R., Stanley, C. R.&Thompson, J. F. H. 1995. Porphyry copper–gold deposits related to alkalic igneous rocks in the Triassic–Jurassic arc terranes of British Columbia. In Pierce, F. W.&Bolm, J. G. (eds) Porphyry copper deposits of the American Cordillera. ARIZONA GEOL SOC DIG 20, 219–36.Google Scholar
LaPierre, H., Charvet, J..Blein, O.&Rouer, O. 1994. Les séquences d'arcs insulaires permo-tiasiques du Nevada nord-occidental (Etats Unis): éléments clés dans l'évolution géodynamiques des Cordilleras nord-américaines. BULL SOC GEOL FR 165, 541–57.Google Scholar
Lee, D. E.&Christiansen, E. H. 1983. The granite problem as exposed in the southern Snake Range, Nevada. CONTRIB MINERAL PETROL 83, 99116.CrossRefGoogle Scholar
Lehmann, B. 1987. Tin granites, geochemical heritage, magmatic differentiation. GEOL RUNDSCH 76, 177–85.CrossRefGoogle Scholar
Leventhal, J. A., Reid, M. R., Montana, A.&Holden, P. 1995. Mesozoic invasion of crust by MORB-source asthenospheric magmas, US Cordilleran interior. GEOLOGY 23, 399402.2.3.CO;2>CrossRefGoogle Scholar
Lindgren, W. 1915. The igneous geology of the Cordilleras and its problems. In Problems of American geology, 234–86. New Haven: Yale University Press.Google Scholar
Lindgren, W. 1933. Mineral deposits, 4th edn. New York: McGraw-Hill.Google Scholar
Lipman, P. W. 1983. The Miocene Questa Caldera, northern New Mexico; relation to batholith emplacement and associated molybdenum mineralization. In The genesis of Rocky Mountain ore deposits: changes with time and tectonics. Proceedings, Denver Regional Geological Society Symposium, 133–47. Denver: Denver Regional Geological Soc.Google Scholar
Lipman, P. 1992. Magmatism in the cordilleran United States; progress and problems. In Burchfield, B. C., Lipman, P. W.&Zoback, M. L. (eds) The Cordilleran orogen, conterminous US. The geology of North America, Vol. G–3, 481514. Boulder: Geological Society of America.Google Scholar
Lipman, P.&Sawyer, D. 1985. Mesozoic ash-flow caldera fragments in southeast Arizona and their relation to porphyry copper deposits. Geology 13, 652–6.2.0.CO;2>CrossRefGoogle Scholar
Lipman, P. W., Christiansen, R. L.&Postka, H. J. 1971. Evolving subduction zones in the western United States, as interpreted from igneous rocks. Science 148, 821–5.CrossRefGoogle Scholar
Lyons, J. I. 1988. Volcanogenic iron oxide deposits, Cerro de Mercado and vicinity, Durango, Mexico. ECON GEOL 83, 1886–906.CrossRefGoogle Scholar
McCandless, T. E.&Ruiz, J. 1993. Rhenium–osmium evidence for regional mineralization in southwestern North America. Science 261, 1282–6.CrossRefGoogle ScholarPubMed
Miller, C. F. 1978. Monzonitic plutons, California, and a model for generation of alkali-rich, near silica-saturated magmas. CONTRIB MINERAL PETROL 67, 349–55.CrossRefGoogle Scholar
Miller, C. F.&Barton, M. D. 1990. Phanerozoic granitoids of the inner Cordillera of the western United States. In Kay, S. M.&Rapela, C. W. (eds) Plutonism from Antarctica to Alaska. GEOL SOC AM SPEC PAP 241, 213–32.Google Scholar
Miller, C. F.&Bradfish, L. J. 1980. An inner Cordilleran belt of muscovite-bearing plutons. Geology 8, 412–6.2.0.CO;2>CrossRefGoogle Scholar
Miller, D. M., Hillhouse, W. C, Zartman, R. E.&Lanphere, M. A. 1987. Geochronology of intrusive and metamorphic rocks in the Pilot Range, Utah and Nevada, and comparison with regional patterns. GEOL SOC AM BULL 99, 866–79.2.0.CO;2>CrossRefGoogle Scholar
Miller, E. L., Miller, M. M., Stevens, C. H., Wright, J. E.&Madrid, R. 1992. Plate Paleozoic paleogcographic and tectonic evolution of the western US cordillera. In Burchfiel, B. C, Lipman, P. W.&Zoback, M. L. (eds) The Cordilleran orogoen: conterminous US. The geology of North America, Vol. G–3, 57106. Boulder: Geological Society of America.Google Scholar
Miranda Gasca, M. A. 1994. The VMS and SEDEX of the Guerrero Terrane, Mexico. In Society of Mining and Exploration Annual Meeting and Exhibit, Albuquerque, New Mexico, abstracts, 49.Google Scholar
Mutschler, F. E., Wright, E. G., Ludington, S.&Abbott, J. T. 1981. Granite molybdenite systems. ECON GEOL 76, 874–97.CrossRefGoogle Scholar
Nelson, B. K.&DePaolo, D. J. 1985. Rapid production of continental crust 1·7 to 1·9 b.y. ago: Nd isotopic evidence from the basement of the North American mid-continent. GEOL SOC AM BULL 96, 746–54.2.0.CO;2>CrossRefGoogle Scholar
Nesbitt, B. E., Muehlenbachs, K.&Murowchick, J. B. 1989. Genetic implications of stable isotope characteristics of mesothermal Au deposits and related Sb and Hg deposits in the Canadian Cordillera. ECON GEOL 84, 1489–506.CrossRefGoogle Scholar
Newberry, R. J.&Einaudi, M. T. 1981. Tectonic and geochemical setting of tungsten skarn mineralization in the Cordillera. In Dickinson, W. R.&Payne, W. D. (eds) Relations of tectonics to ore deposits in the southern Cordillera. ARIZONA GEOL SOC DIGEST 14, 99112.Google Scholar
Nolan, T. B. 1962. The Eureka mining district, Nevada. US GEOL SURV PROF PAP 406.Google Scholar
Norton, D. 1982. Fluid and heat transport phenomena typical of copper-bearing pluton environments; southeastern Arizona. In Titley, S. R. (ed.) Advances in geology of porphyry copper deposits; southwestern North America, 5972. Tucson: University of Arizona Press.Google Scholar
Ohmoto, H., Drummond, S. E., Eldridge, C. S., Pisutha-Arnond, V.&Barton, P. B. Jr. 1983. Chemical processes of Kuroko formation. In Ohmoto, H.&Skinner, B. J. (eds) The Kuroko and related volcanogenic massive sulfide deposits. ECON GEOL MONGR 5, 570604.Google Scholar
O'Neil, J. R.&Silberman, M. L. 1974. Stable isotope relations in epithermal Au–Ag deposits. ECON GEOL 69, 902909.CrossRefGoogle Scholar
Ortega-Gutiérrez, F., Mitre Salazar, L. M., Roldán Quintana, J., Aranda Gomez, J., Morán Zenteno, D., Alaniz Alvarez, S.&Nieto Samaniego, A. 1992. Carta geológica de la República Mexicana, scale 1:2,000,000, 5th edn. Mexico City: Editorial Americana.Google Scholar
Patchett, P. J.&Ruiz, J. 1989. Nd isotopes and the origin of Grenvilleage rocks in Texas: implications for Proterozoic evolution of the United States Mid-continent region. J GEOL 97, 685–95.CrossRefGoogle Scholar
Patino Douce, A. E., Humphreys, E. D.&Johnston, A. D. 1990. Anatexis and metamorphism in tectonically thickened continental crust exemplified by the Sevier hinterland, western North America. EARTH PLANET SCI LETT 97, 290315.CrossRefGoogle Scholar
Perry, F. V., DePaolo, D. J.&Baldridge, W. S. 1993. Isotopic evidence for a decline in crustal contributions to caldera-forming rhyolites of the western United States during the middle to late Cenozoic. GEOL SOC AM BULL 105, 872–82.2.3.CO;2>CrossRefGoogle Scholar
Pollard, P. J.&London, D. 1995. A special issue devoted to the geology of rare metal deposits: an introduction and overview. ECON GEOL 90, 489–94.CrossRefGoogle Scholar
Reiners, P. W., Nelson, B. K.&Ghiorso, M. S. 1995. Assimilation of felsic crust by basaltic magmas: thermal limits and extents of crustal contamination of mantle-derived magmas. GEOLOGY 23, 563–6.2.3.CO;2>CrossRefGoogle Scholar
Rice, C. M., Harmon, R. S.&Shepard, C. J. 1985. Central City, Colorado: the upper part of an alkaline porphyry molybdenum system. ECON GEOL 80, 1769–96.CrossRefGoogle Scholar
Roberts, M. P.&Clemens, J. D. 1993. Origin of high-potassium, calc-alkaline, I-type granitoids. GEOLOGY 21, 825–8.2.3.CO;2>CrossRefGoogle Scholar
Roldan Quintana, J. 1991. Geology and chemical composition of the Jaralito and Aconchi batholiths in east-central Sonora, Mexico. In Perez Segura, E.&Jaques Ayala, C. (eds) Studies of Sonoran geology. GEOL SOC AM SPEC PAP 254, 1936.Google Scholar
Ruiz, J. 1985. Petrology, distribution and origin of rhyolites associated with tin mineralization in the Sierra Madre Occidental, Mexico. In Taylor, R. P.&Strong, D. F. (eds) Granite-related mineral deposits; geology, petrogenesis, and tectonic setting. Conference on granite related mineral deposits, 322–30. Ottawa: Canadian Institute of Mining.Google Scholar
Saleeby, J.&Busby-Spera, C. J. 1992. Early Mesozoic tectonic evolution of the western United States cordillera. In Burchfield, B. C, Lipman, P. W.&Zoback, M. L. (eds) The Cordilleran orogen, conterminous US. The geology of North America, Vol. G–3, 107–68. Boulder: Geological Society of America.Google Scholar
Saleeby, J. B., Shaw, H. F., Niemeyer, S., Moores, E. M.&Edelman, S. H. 1989. U/Pb, Sm/Nd and Rb/Sr geochronological and isotopic study of northern Sierra Nevada ophiolitic assemblages, California. CONTRIB MINERAL PETROL 102, 205–20.CrossRefGoogle Scholar
Sandiford, M., Marin, N., Zhou, S.&Turner, S. 1992. Granite genesis and the mechanism of convergent orogenic belts with application to the southern Adelaide fold belt. TRANS R SOC EDINBURGH EARTH SCI 83, 8393.Google Scholar
Sawkins, F. J. 1990. Metal deposits in relation to plate tectonics, 2nd edn. New York: Springer-Verlag.CrossRefGoogle Scholar
Scotese, C. R.&Denham, C. R. 1988. Terra mobilus. Austin: Earth in Motion Technologies.Google Scholar
Sedlock, R. L., Ortega-Gutiérrez, F.&Speed, R. C. 1993. Tectonostratigraphic terranes and tectonic evolution of Mexico. GEOL SOC AM SPEC PAP 278.Google Scholar
Seedorff, E. 1991a. Magmatism, extension, and ore deposits of Eocene to Holocene age in the Great Basin—mutual effects and preliminary proposed genetic relationships. In Raines, G. L., Lisle, R. E., Schafer, R. W.&Wilkinson, W. H. (eds) Geology and ore deposits of the Great Basin, symposium proceedings, 113–78. Reno: Geological Society of Nevada.Google Scholar
Seedorff, E. 1991b. Royston District, western Nevada; a Mesozoic porphyry copper system that was tilted and dismembered by Tertiary normal faults. In Raines, G. L., Lisle, R. E., Schafer, R. W.&Wilkinson, W. H. (eds) Geology and ore deposits of the Great Basin, symposium proceedings, 359–92. Reno: Geological Society of Nevada.Google Scholar
Shaw, A. L.&Guilbert, J. M. 1990. Geochemistry and metallogeny of Arizona peraluminous granitoids with reference to Appalachian and European occurrences. In Stein, H. J.&Hannah, J. L. (eds) Ore-bearing granitic systems: petrogenesis and mineralizing processes. GEOL SOC AM SPEC PAP 246, 317–56.Google Scholar
Sillitoe, R. H. 1973. The tops and bottoms of porphyry copper deposits. ECON GEOL 68, 799815.CrossRefGoogle Scholar
Sillitoe, R. H. 1976. Andean mineralization: a model for the metallogeny of convergent plate boundaries. GEOL ASSOC CAN SPEC PAP 14, 59100.Google Scholar
Sillitoe, R. H.&Bonham, H. F. Jr 1990. Sediment-hosted gold deposits; distal products of magmatic–hydrothermal systems. GEOLOGY 18, 157–61.2.3.CO;2>CrossRefGoogle Scholar
Silver, L. T., Taylor, H. P. Jr&Chappell, B. W. 1979. Some petrologic and geochronologic observations of the Peninsular Ranges batholith near the international border of the United States of America and Mexico. In Abott, P. L.&Todd, V. R. (eds) Mesozoic crystalline rocks: Peninsular Ranges batholith and pegmatites, Point Sal Ophiolite. GEOL SOC AM FIELD TRIP GUIDE, 83116.Google Scholar
Speed, R. C, Elison, M. W.&Heck, F. R. 1988. Phanerozoic tectonic evolution of the Great Basin. In Ernst, W. G. (ed.) Metamorphism and crustal evolution, western conterminous United States. Rubey Volume VII, 572605. Englewood Cliffs: Prentice-Hall.Google Scholar
Staude, J.-M. 1995. Epithermal mineralization in the Sierra Madrea Occidental and the metallogeny of northwestern Mexico. Unpublished Ph.D. Thesis, University of Arizona.Google Scholar
Stein, H. J.&Crock, J. G. 1990. Late Cretaceous–Tertiary magmatism in the Colorado mineral belt; rare earth element and samarium neodymium isotopic studies. In Anderson, J. L. (ed.) The nature and origin of Cordilleran magmatism. GEOL SOC AM MEM 174, 195223.Google Scholar
Titley, S. R. 1982. Geologic setting of porphyry copper deposits; southeastern Arizona. In Titley, S. R. (ed.) Advances in geology of the porphyry copper deposits southwestern North America, 3758. Tucson, University of Arizona Press.Google Scholar
Titley, S. R. 1987. The crustal heritage of silver and gold ratios in Arizona ores. GEOL SOC AM BULL 99, 814–26.2.0.CO;2>CrossRefGoogle Scholar
Titley, S. R. 1993. Characteristics of high-temperature, carbonate-hosted massive sulphide ores in the United States, Mexico and Peru. GEOL ASSOC CAN SPEC PAP 40, 585614.Google Scholar
Titley, S. R.&Beane, R. E. 1981. Porphyry copper deposits; part I, geologic settings, petrology and tectogenesis. In Skinner, B. J. (ed.) 75th Anniversary Volume. ECON GEOL 214–35.Google Scholar
Todd, V. R.&Shaw, S. E. 1985. S-type granitoids and an I-S line in the Peninsular Ranges Batholith, southern California. GEOLOGY 13, 231–3.2.0.CO;2>CrossRefGoogle Scholar
Torres-Vargas, R. 1993. A Permo-Triassic granitic belt in Mexico: its origin and tectonic implications. Unpublished M.S. Thesis, University of Arizona.Google Scholar
Tosdal, R. M., Haxel, G. B.&Wright, J. E. 1989. Jurassic geology of the Sonoran Desert region, southern Arizona, southeastern California, and northernmost Sonora; construction of a continental-margin magmatic arc. In Reynolds, S. J.&Jenny, J. P. (eds) Summary of Arizona geology. ARIZONA GEOL SOC DIG 17, 397434.Google Scholar
Urabe, T. 1985. Aluminous granite as a source of hydrothermal oredeposits: an experimental study. ECON GEOL 80, 148–57.CrossRefGoogle Scholar
van Middelaar, W. T.&Keith, J. D. 1990. Mica chemistry as an indicator of oxygen and halogen fugacities in the CanTung and other W-related granitoids in the North America Cordillera. In Stein, H. J.&Hannah, J. L. (eds) Ore-bearing granitic systems: petrogenesis and mineralizing processes. GEOL SOC AM SPEC PAP 246, 2134.Google Scholar
Vikre, P. G. 1981. Silver mineralization in the Rochester Mining District, Pershing County, Nevada. ECON GEOL 76, 580609.CrossRefGoogle Scholar
Walawender, M. J., Gastil, R. G., Clinkenbeard, J. P., McCormick, W., V., Eastman, B. G., Wernicke, R. S., Wardlaw, M. S., Gunn, S. H.&Smith, B. M. 1990. Origin and evolution of the zoned La Posta-type plutons, eastern Peninsular Ranges Batholith, Southern and Baja California. In Anderson, J. L. (ed.) The nature and origin of Cordilleran magmatism. GEOL SOC AM MEM 174, 118.Google Scholar
Westra, G. 1982. Alteration and mineralization in the Ruth porphyry copper deposit near Ely, Nevada. ECON GEOL 77, 950–70.CrossRefGoogle Scholar
Westra, G.&Keith, S. B. 1982. Classification and genesis of stockwork molybdenum deposits. ECON GEOL 76, 844–73.CrossRefGoogle Scholar
Wodzicki, W. A. 1995. Relationships between magmatism and mineralization, Cananea district, Sonora, Mexico. Unpublished Ph.D. Thesis, University of Arizona.Google Scholar
Wright, J. E.&Wooden, J. L. 1991. New Sr, Nd, Pb isotopic data from plutons in the northern Great Basin: implications for crustal structure and granite petrogenesis in the hinterland of the Sevier thrust belt. GEOLOGY 19, 457–60.2.3.CO;2>CrossRefGoogle Scholar
Zartman, R. E. 1974. Lead isotope provinces in the Cordillera of the western United States and their geologic significance. ECON GEOL 69, 792805.CrossRefGoogle Scholar