Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T11:34:30.033Z Has data issue: false hasContentIssue false

The giant quartz-breccia veins of the Tyndrum–Dalmally area, Grampian Highlands, Scotland: their geometry, origin and relationship to the Cononish gold–silver deposit

Published online by Cambridge University Press:  12 March 2013

P. W. Geoff Tanner*
Affiliation:
Department of Geographical and Earth Sciences, Gregory Building, University of Glasgow, Glasgow G12 8QQ, UK

Abstract

The area lies within a ∼15 km-wide compartment of polyphase-deformed Dalradian (Neoproterozoic) rocks, bounded by the NE-trending Tyndrum and Ericht–Laidon transcurrent faults. Sinistral movement on these faults caused a periclinal structure, the Orchy Dome, to develop from flat-lying Dalradian rocks. This dome controlled the spatial distribution of lamprophyre intrusions and explosion breccia pipes, before being cross-cut by a network of near-vertical faults. Some of these faults are host to giant, segmented, quartz-breccia veins up to 5 km long and 19 m thick, formed by cyclic injection of over-pressured Si-rich fluid into newly-formed faults. The quartz-breccia bodies consist of a plexus of quartz veins with cockade and vuggy textures, indicative of open-space, high-level crystallisation. The faults comprise a NE-trending set of mineralised veins, including the Cononish Au–Ag deposit, and two pairs of conjugate [NW- and NE-trending] and [NNW- and NNE-trending], generally non-mineralised, faults. Their geometry is that predicted by the Coulomb model for Riedel R and R′ shear fractures, modified by variations in pore fluid pressure. They were active c. 430–425 Ma ago, coincident with emplacement of the Lochaber Batholith, whose buried extension, together with the mantle, probably provided the bulk of the fluid needed to form the veins.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

11. References

Atherton, M. P. & Ghani, A. A. 2002. Slab breakoff: a model for Caledonian, Late Granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland. Lithos 62, 6585.Google Scholar
Bailey, E. B. 1922. The structure of the South-west Highlands of Scotland. Quarterly Journal of the Geological Society, London 78, 82127.Google Scholar
Bailey, E. B. & Macgregor, M. 1912. The Glen Orchy Anticline (Argyllshire). Quarterly Journal of the Geological Society, London 68, 164–79.CrossRefGoogle Scholar
Barrington, J. & Kerr, P. F. 1961. Breccia pipe near Cameron, Arizona. Geological Society of America Bulletin 72, 1661–74.Google Scholar
Baxter, E. F., Ague, J. J. & Depaolo, D. J. 2002. Prograde temperature-time evolution in the Barrovian type-locality constrained by Sm/Nd garnet ages from Glen Clova, Scotland. Journal of the Geological Society, London 159, 7182.Google Scholar
Bons, P. D. 2001. The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics 336 (1–4), 117.CrossRefGoogle Scholar
Browne, M. A. E., Smith, R. A. & Aitken, A. M. 2002. Stratigraphical framework for the Devonian (Old Red Sandstone) rocks of Scotland south of the line from Fort William to Aberdeen. British Geological Survey Research Report R R/01/04.Google Scholar
Caine, J. S., Evans, J. P. & Forster, C. B. 1996. Fault zone architecture and permeability structure. Geology 24 (11), 1025–28.Google Scholar
Cloos, E. 1955. Experimental analysis of fracture patterns. Geological Society of America Bulletin 66, 241–56.Google Scholar
Colvine, A. C., Fyon, J. A., Heather, K. B., Marmont, S., Smith, P. M. & Troop, D. G. 1988. Archean lode gold deposits in Ontario. Ontario Geological Survey Miscellaneous Paper 139. 136pp.Google Scholar
Conliffe, J., Selby, D., Porter, S. J. & Feely, M. 2010. Re–Os molybdenite dates from the Ballachulish and Kilmelford Igneous Complexes (Scottish Highlands): age constraints for late Caledonian magmatism. Journal of the Geological Society, London 167, 297302.Google Scholar
Cox, S. F. & Etheridge, M. A. 1983. Crack-seal fibre growth mechanisms and their significance in the development of orientated layer silicate microstructures. Tectonophysics 92, 147–70.Google Scholar
Craw, D. 1990. Regional fluid and metal mobility in the Dalradian metamorphic belt, Southern Grampian Highlands, Scotland. Mineralium Deposita 25, 281–88.Google Scholar
Craw, D. & Chamberlain, C. P. 1996. Meteoric incursion and oxygen fronts in the Dalradian metamorphic belt, southwest Scotland: a new hypothesis for regional gold mobility. Mineralium Deposita 31, 365–73.Google Scholar
Curtis, S. F., Pattrick, R. A. D., Jenkin, G. R. T., Fallick, A. E., Boyce, A. J. & Treagus, J. E. 1993. Fluid inclusion and stable isotope study of fault-related mineralization in Tyndrum area, Scotland. Transactions of the Institute of Mining and Metallurgy (Sect B: Applied earth sciences) 102, B3947.Google Scholar
Davis, G. H. & Reynolds, S. J. 1996. Structural Geology of Rocks and Regions. (2nd edn). Chichester: John Wiley & Sons. 776 pp.Google Scholar
Dewey, J. F. & Strachan, R. A. 2003. Changing Silurian–Devonian relative plate motion in the Caledonides: sinistral transpression to sinistral transtension. Journal of the Geological Society, London 160, 219–29.Google Scholar
Dominy, S. C., Platten, I. M., Xie, Y. & Sangster, C. J. S. 2009. Analysis of geological mapping data at the Cononish Gold-Silver Mine, Perthshire, Scotland. In Dominy, S. (ed.) Proceedings of the Seventh International Mining Geology Conference. Perth, WA, 187–96. Melbourne: The Australasian Institute of Mining and Metallurgy.Google Scholar
Dowling, K. & Morrison, C. 1988. Applications of quartz textures to the classification of gold deposits using north Queensland examples. Economic Geology Monograph 6, 342–55.Google Scholar
Earls, G., Parker, R. T., Clifford, J. A. & Meldrum, A. H. 1992. The geology of the Cononish gold–silver deposit, Grampian Highlands of Scotland. In Bowden, A. A., Earls, G., O'Connor, P. G. & Pyne, J. F. (eds) Irish Minerals Industry 1980–1990, 89103. Dublin: Irish Association for Economic Geology.Google Scholar
Genna, A., Jébrak, M., Marcoux, E. & Milési, J. P. 1996. Genesis of cockade breccias in the tectonic evolution of the Cirotan epithermal gold system, West Java. Canadian Journal of Earth Sciences 33, 93102.Google Scholar
Groves, D. I., Goldfarb, R. J., Robert, F. & Hart, C. J. R. 2003. Gold deposits in metamorphic belts: Overview of current understanding, outstanding problems, future research and exploration significance. Economic Geology 98, 129.Google Scholar
Hamidullah, S. 2007. Petrography and mineral chemistry as indicators of variations of crystallization conditions in the Loch Lomond and Appin appinite suites, western Scotland. Proceedings of the Geologists' Association 118, 101–15.Google Scholar
Haney, M. M., Snieder, R., Sheiman, J. & Losh, S. 2005. A moving fluid pulse in a fault zone. Nature 437, 46.Google Scholar
Hinxman, L. W., Carruthers, R. G. & MacGregor, M. A. 1923. The Geology of Corrour and the Moor of Rannoch: explanation of Sheet 54. Memoirs of the Geological Survey of Great Britain, Scotland 54. Edinburgh: HMSO. 96pp.Google Scholar
Hippertt, J. F. & Massucatto, A. J. 1998. Phyllonitization and development of kilometer-size extension gashes in a continental-scale strike-slip shear zone, north Goiás, central Brazil. Journal of Structural Geology 20, 433–45.Google Scholar
Hubbert, M. K. & Rubey, W. W. 1959. Role of fluid pressure in the mechanisms of overthrust faulting. Geological Society of America Bulletin 70, 115205.Google Scholar
Jacques, J. M. & Reavy, R. J. 1994. Caledonian plutonism and major lineaments in the SW Scottish Highlands. Journal of the Geological Society, London 151, 955–69.Google Scholar
Jébrak, M. 1997. Hydrothermal breccias in vein-type ore deposits: A review of mechanisms, morphology and size distribution. Ore Geology Reviews 12, 111–34.Google Scholar
Jia, Y. & Kerrich, R. 2000. Giant quartz vein systems in accretionary orogenic belts: the evidence for a metamorphic fluid origin from δ15N and δ13C studies. Earth and Planetary Science Letters 184, 211–24.Google Scholar
Kerrich, R. & Feng, R. 1992. Archean geodynamics and the Abitibi–Pontiac collision: implications for advection at transpressive collisional boundaries and the origin of giant quartz vein systems. Earth Science Reviews 32, 3360.Google Scholar
Kynaston, H. & Hill, J. B. 1908. The geology of the country near Oban and Dalmally: explanation of Sheet 45. Memoir of the Geological Survey, Scotland 45. Glasgow: James Hedderwick & Sons for HMSO. 184 pp.Google Scholar
Lemarchand, J., Boulvais, P., Gaboriau, M., Boiron, M C., Tartèse, R., Cokkinos, M., Bonnet, S. & Jégouzo, P. 2012. Giant quartz vein formation and high-elevation meteoric fluid infiltration into the South Armorican Shear Zone: geological, fluid inclusion and stable isotope evidence. Journal of the Geological Society, London 169, 1727.Google Scholar
Lowry, D., Boyce, A. J., Fallick, A. E. & Stephens, W. E. 1995. Genesis of porphyry and plutonic mineralisation systems in metaluminous granitoids of the Grampian Terrane, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 85 (for 1994), 221–37.Google Scholar
Matonti, C., Lamarche, J., Guglielmi, Y. & Marié, L. 2012. Structural and petrophysical characterization of mixed conduit/seal fault zones in carbonates: Example from the Castellas fault (SE France). Journal of Structural Geology 39, 103–21.Google Scholar
Neilson, J. C., Kokelaar, B. P. & Crowley, Q. C. 2009. Timing, relations and cause of plutonic and volcanic activity of the Siluro-Devonian post-collision magmatic episode in the Grampian Terrane, Scotland. Journal of the Geological Society, London 166, 545–61.Google Scholar
Oliver, G. J. H. 2001. Reconstruction of the Grampian episode in Scotland: its place in the Caledonian Orogeny. Tectonophysics 332, 2349.Google Scholar
Paez, G. N., Ruiz, R., Guido, D. M., Jovic, S. M. & Schalamuk, I. B. 2011. Structurally controlled fluid flow: High-grade silver ore-shoots at Martha epithermal mine, Deseado Massif, Argentina. Journal of Structural Geology 33, 985–99.Google Scholar
Park, C. F. & MacDiarmid, R. A. 1975. Ore deposits (3rd edn). San Francisco: W. H. Freeman.Google Scholar
Parker, R. T. G., Clifford, J. A. & Meldrum, A. H. 1989. The Cononish gold–silver deposit, Perthshire, Scotland. Transactions of the Institute of Mining and Mineralogy (section B, Applied Earth Science) 98, B5152.Google Scholar
Parry, S. F., Noble, S. R., Crowley, Q. G. & Wellman, C. H. 2011. A high-precision U–Pb age constraint on the Rhynie Chert Konservat–Lagerstätte: time scale and other implications. Journal of the Geological Society, London 168, 863–72.Google Scholar
Pattrick, R. A. D. 1985. Pb–Zn and minor U mineralization at Tyndrum, Scotland. Mineralogical Magazine 49, 671–81.Google Scholar
Pattrick, R. A. D., Boyce, A. & MacIntyre, R. M. 1988. Gold–Silver Vein Mineralization at Tyndrum, Scotland. Mineralogy and Petrology 38, 6176.Google Scholar
Phillips, W. J. 1972. Hydraulic fracturing and mineralization. Journal of the Geological Society, London 128, 337–59.Google Scholar
Porter, S. J. & Selby, D. 2010. Rhenium–Osmium (Re–Os) molybdenite systematics and geochronology of the Cruachan Granite skarn mineralization, Etive Complex: implications for emplacement chronology. Scottish Journal of Geology 46 (1), 1721.Google Scholar
Power, M. R., Pirrie, D., Jedwab, J. & Stanley, C. J. 2004. Platinum-group element mineralization in an As-rich magmatic sulphide system, Talnotry, south-west Scotland. Mineralogical Magazine 68 (2), 395411.Google Scholar
Ramsay, J. G. 1980. The crack-seal mechanism of rock deformation. Nature 284, 135–39.Google Scholar
Rice, C. M., Trewin, N. H. & Anderson, L. I. 2002. Geological setting of the Early Devonian Rhynie cherts, Aberdeenshire, Scotland: an early terrestrial hot spring system. Journal of the Geological Society, London 159, 203–14.Google Scholar
Riedel, W. 1929. Zur Mechanik geologischer Brucherscheinungen. Zentral blatt für Mineralogie Abteilung B 1929, 354–68.Google Scholar
Roberts, J. L. & Treagus, J. E. 1975. The structure of the Moine and Dalradian rocks in the Dalmally district of Argyllshire, Scotland. Geological Journal 10, 5974.Google Scholar
Rogers, G. & Dunning, G. R. 1991. Geochronology of appinitic and related granitic magmatism in the W Highlands of Scotland: constraints on the timing of transcurrent fault movement. Journal of the Geological Society, London 148, 1727.Google Scholar
Secor, D. T. & Pollard, D. D. 1975. On the stability of open hydrofractures in the Earth's crust. Geophysical Research Letters 2, 510–13.Google Scholar
Scotgold. 2007. Prospectus for Initial Public Offering on the Australian Stock Exchange. Scotgold Resources Limited. 97 pp. ASX Announcementwww.Scotgold.comGoogle Scholar
Scotgold. 2010. Annual Report 2010. Scotgold Resources Limited. ASX Announcementwww.Scotgold.comGoogle Scholar
Scotgold. 2012. ASX Announcement, March, 2012. Scotgold Resources Limited. ASX Announcementwww.Scotgold.comGoogle Scholar
Sibson, R. H. 1977. Fault rocks and fault mechanisms. Journal of the Geological Society, London 133 (3), 191213.Google Scholar
Sibson, R. H. 1990. Conditions for fault-valve behaviour. In Knipe, R. J. & Rutter, E. H. (eds) Deformation Mechanisms, Rheology and Tectonics. Geological Society, London, Special Publications 54, 1528.Google Scholar
Sibson, R. H. 2000. A brittle failure mode plot defining conditions for high-flux flow. Economic Geology 95, 4148.Google Scholar
Sibson, R. H., Robert, F. & Poulsen, K. H. 1988. High-angle reverse faults, fluid pressure cycling, and mesothermal gold-quartz deposits. Geology 16, 551–55.Google Scholar
Stewart, M., Strachan, R. A., Martin, M. W. & Holdsworth, R. E. 2001. Dating early sinistral displacements along the Great Glen Fault Zone, Scotland: structural setting, emplacement and U–Pb geochronology of the syn-tectonic Clunes Tonalite. Journal of the Geological Society, London 158, 821–30.Google Scholar
Sylvester, A. G. 1988. Strike-slip faults. Geological Society of America Bulletin 100, 1666–703.Google Scholar
Tanner, P. W. G. & Sutherland, S. 2007. The Highland Border Complex, Scotland: a paradox resolved. Journal of the Geological Society, London 164, 111–16.Google Scholar
Tanner, P. W. G. & Thomas, P. R. 2010. Major nappe-like D2 folds in the Dalradian rocks of the Beinn Udlaidh area, Central Highlands, Scotland. Earth and Environmental Transactions of the Royal Society of Edinburgh 100 (for 2009), 371–89.Google Scholar
Thomas, P. R. & Treagus, J. E. 1968. The stratigraphy and structure of the Glen Orchy area, Argyllshire, Scotland. Scottish Journal of Geology 4, 121–34.CrossRefGoogle Scholar
Treagus, J. E. 1991. Fault displacements in the Dalradian of the Central Highlands. Scottish Journal of Geology 27 (2), 135–45.CrossRefGoogle Scholar
Treagus, J. E., Pattrick, R. A. D. & Curtis, S. F. 1999. Movement and mineralization in the Tyndrum Fault Zone, Scotland and its regional significance. Journal of the Geological Society, London 156, 591604.Google Scholar
Vearncombe, J. R. 1993. Quartz vein morphology and implications for formation depth and classification of Achaean gold-vein deposits. Ore Geology Reviews 8, 407–24.Google Scholar
Weertman, J. 1971. Theory of water-filled crevasses in glaciers applied to vertical magma transport beneath ocean ridges. Journal of Geophysical Research 76, 1171–83.Google Scholar
Wilcox, R. E., Harding, T. P. & Seely, D. R. 1973. Basic Wrench Tectonics. The American Association of Petroleum Geologists Bulletin 57, 7496.Google Scholar
Yardley, B. W. D. 2009. Review. The role of water in the evolution of the continental crust. Journal of the Geological Society, London 166, 585600.Google Scholar
Yardley, B. W. D. & Bottrell, S. H. 1992. Silica mobility and fluid movement during metamorphism of the Connemara Schists, Ireland. Journal of Metamorphic Geology 10, 453–64.Google Scholar