Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-24T10:35:56.203Z Has data issue: false hasContentIssue false

Neural activation, cognitive control, and attention deficit hyperactivity disorder: Evaluating three competing etiological models

Published online by Cambridge University Press:  08 November 2022

Virginia Peisch*
Affiliation:
Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA, USA
Anne B. Arnett
Affiliation:
Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA, USA Department of Pediatrics, Harvard Medical School, Boston, MA, USA
*
Corresponding author: Virginia Peisch, email: virginia.peisch@childrens.harvard.edu

Abstract

Background:

Cognitive control impairments are observed across several psychiatric conditions, highlighting their role as a transdiagnostic marker. Individuals with attention deficit hyperactivity disorder (ADHD) have difficulties with inhibition, working memory, processing speed, and attention regulation. These cognitive control impairments may either mediate or moderate the association between neurobiological vulnerabilities and phenotypic presentation in neurodevelopmental disorders. Alternately, neurocognitive vulnerabilities in ADHD may be additive, akin to a multiple deficit model. We tested the mediation, moderation, and additive models using neurocognitive data in youth with ADHD.

Methods:

7–11 year-old children diagnosed with ADHD (n = 75) and control children (n = 29) completed EEG recordings and neuropsychological testing (full scale IQ; cognitive control). Caregivers provided ADHD symptom ratings. Correlations and linear regression analyses were completed to examine the associations among cortical functioning (aperiodic slope), cognitive control, and ADHD symptoms.

Results:

We found support for an additive model wherein vulnerabilities in aperiodic slope, event-related potentials, and cognitive control each explained unique variance in ADHD symptoms. There was some evidence that cognitive control moderates the effect of atypical cortical development on ADHD symptoms. There was no support for the mediation model.

Conclusions:

The etiology of ADHD symptoms is multifaceted and involves multiple “hits” across neurological and cognitive-behavioral factors.

Type
Regular Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnett, A. B., Fearey, M., Peisch, V., & Levin, A. R. (2022). Reduced dynamic aperiodic spectral slope marks atypical neural information processing in children with attention deficit hyperactivity disorder. Available at SSRN 3960707. https://doi.org/10.2139/ssrn.3960707 CrossRefGoogle Scholar
Arnett, A. B., McGrath, L., Flaherty, B., Pennington, B. F., & Willcutt, E. F. (2022). Heritability and clinical characteristics of neuropsychological profiles in youth with and without elevated ADHD symptoms. Journal of Attention Disorders, 26(11), 14221436. https://doi.org/10.1177/10870547221075842 CrossRefGoogle ScholarPubMed
Arnett, A. B., Rhoads, C., & Rutter, T. M. (2021). Reduced error recognition explains post-error slowing differences among children with attention deficit hyperactivity disorder. Journal of the International Neuropsychological Society, 28(8), 810820. https://doi.org/10.1017/S1355617721001065 CrossRefGoogle ScholarPubMed
Association, A. P. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Association.CrossRefGoogle Scholar
Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121(1), 6594. https://doi.org/10.1037/0033-2909.121.1.65 CrossRefGoogle ScholarPubMed
Barkley, R. A. (2015). Executive functioning and self-regulation viewed as an extended phenotype: Implications of the theory for ADHD and its treatment. In Attention-deficit hyperactivity disorder: A handbook for diagnosis and treatment. The Guilford Press.Google Scholar
Bong, S. H., Choi, T. Y., Kim, K. M., Lee, J., & Kim, J. W. (2020). Correlation between executive function and quantitative EEG in patients with anxiety by the Research Domain Criteria (RDoC) framework. Scientific reports, 10(1), 19.CrossRefGoogle ScholarPubMed
Brown, C. R., Clarke, A. R., Barry, R. J., McCarthy, R., Selikowitz, M., & Magee, C. (2005). Event-related potentials in attention-deficit/hyperactivity disorder of the predominantly inattentive type: An investigation of EEG-defined subtypes. International Journal of Psychophysiology, 58(1), 94107. https://doi.org/10.1016/j.ijpsycho.2005.03.012 CrossRefGoogle ScholarPubMed
Calub, C. A., Rapport, M. D., Friedman, L. M., & Eckrich, S. J. (2019). IQ and academic achievement in children with ADHD: The differential effects of specific cognitive functions. Journal of Psychopathology and Behavioral Assessment, 41(4), 639651. https://doi.org/10.1007/s10862-019-09728 CrossRefGoogle Scholar
Carlson, S. M. (2016). Developmentally sensitive measures of executive function in preschool children. In Measurement of Executive Function in Early Childhood (pp. 595–616). Psychology Press.Google Scholar
Castellanos, F. X., & Proal, E. (2012). Large-scale brain systems in ADHD: Beyond the prefrontal-striatal model. Trends in Cognitive Sciences, 16(1), 1726. https://doi.org/doi.org/0.1016/j.tics.2011.11.007 CrossRefGoogle ScholarPubMed
Chung, H. J., Weyandt, L. L., & Swentosky, A. (2014). The physiology of executive functioning. In Handbook of executive functioning (pp. 1327). Springer.CrossRefGoogle Scholar
Cole, M. W., Repovš, G., & Anticevic, A. (2014). The frontoparietal control system: A central role in mental health. The Neuroscientist, 20(6), 652664.CrossRefGoogle ScholarPubMed
Collette, F., Van der Linden, M., Laureys, S., Delfiore, G., Degueldre, C., Luxen, A., & Salmon, E. (2005). Exploring the unity and diversity of the neural substrates of executive functioning. Human Brain Mapping, 25(4), 409423. https://doi.org/10.1177/1073858414525995 CrossRefGoogle ScholarPubMed
Craig, F., Margari, F., Legrottaglie, A. R., Palumbi, R., De Giambattista, C., & Margari, L. (2016). A review of executive function deficits in autism spectrum disorder and attention-deficit/hyperactivity disorder. Neuropsychiatric disease and treatment, 12, 1191.Google ScholarPubMed
Cubillo, A., Halari, R., Smith, A., Taylor, E., & Rubia, K. (2012). A review of fronto-striatal and fronto-cortical brain abnormalities in children and adults with Attention Deficit Hyperactivity Disorder (ADHD) and new evidence for dysfunction in adults with ADHD during motivation and attention. Cortex, 48(2), 194215. https://doi.org/10.1016/j.cortex.2011.04.007 CrossRefGoogle ScholarPubMed
Cuthbert, B. N., & Insel, T. R. (2013). Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Medicine, 11(1), 126126. https://doi.org/10.1186/1741-7015-11-126 CrossRefGoogle ScholarPubMed
Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis-Kaplan Executive Function System (D-KEFS). APA PsycTests.Google Scholar
Demontis, D., Walters, R. K., Martin, J., Mattheisen, M., Als, T. D., Agerbo, E., Baldursson, G. D., Belliveau, R., Bybjerg-Grauholm, J., Bækvad-Hansen, M., Cerrato, F., Chambert, K., Churchhouse, C., Dumont, A., Eriksson, N., Gandal, M., Goldstein, J. I., Grasby, K. L., Grove, J., …Neale, B. M. (2019). Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature Genetics, 51(1), 6375. https://doi.org/10.1038/s41588-018-0269-7 CrossRefGoogle ScholarPubMed
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135168. https://doi.org/10.1146/annurev-psych-113011-143750 CrossRefGoogle ScholarPubMed
Donoghue, T., Dominguez, J., & Voytek, B. (2020). Electrophysiological frequency band ratio measures conflate periodic and aperiodic neural activity. Eneuro, 7(6). https://doi.org/10.1523/eneuro.0192-20.2020 CrossRefGoogle ScholarPubMed
Donoghue, T., Haller, M., Peterson, E. J., Varma, P., Sebastian, P., Gao, R., Noto, T., Lara, A. H., Wallis, J. D., Knight, R. T., Shestyuk, A., & Knight, R. T. (2020). Parameterizing neural power spectra into periodic and aperiodic components. Nature Neuroscience, 23(12), 16551665. https://doi.org/10.1038/s41593-020-00744-x CrossRefGoogle ScholarPubMed
Downes, M., Bathelt, J., & De Haan, M. (2017). Event-related potential measures of executive functioning from preschool to adolescence. Developmental Medicine & Child Neurology, 59(6), 581590. https://doi.org/10.1111/dmcn.13395 CrossRefGoogle ScholarPubMed
Fair, D. A., Bathula, D., Nikolas, M. A., & Nigg, J. T. (2012). Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD. Proceedings of The National Academy of Sciences of The United States of America, 109(17), 67696774. https://doi.org/10.1073/pnas.1115365109 CrossRefGoogle ScholarPubMed
Gabard-Durnam, L. J., Mendez Leal, A. S., Wilkinson, C. L., & Levin, A. R. (2018). The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): Standardized processing software for developmental and high-artifact data. Frontiers in Neuroscience, 12, 97. https://doi.org/10.3389/fnins.2018.00097 CrossRefGoogle ScholarPubMed
Geurts, H. M., Verté, S., Oosterlaan, J., Roeyers, H., & Sergeant, J. A. (2005). ADHD subtypes: Do they differ in their executive functioning profile? Archives of Clinical Neuropsychology, 20(4), 457477. https://doi.org/10.1016/j.acn.2004.11.001 CrossRefGoogle ScholarPubMed
Gomarus, H. K., Wijers, A. A., Minderaa, R. B., & Althaus, M. (2009). ERP correlates of selective attention and working memory capacities in children with ADHD and/or PDD-NOS. Clinical Neurophysiology, 120(1), 6072. https://doi.org/10.1016/B978-0-444-52002-9.00023-1 CrossRefGoogle ScholarPubMed
Gould, K. L., Coventry, W. L., Olson, R. K., & Byrne, B. (2018). Gene-environment interactions in ADHD: The roles of SES and chaos. Journal of Abnormal Child Psychology, 46(2), 251263. https://doi.org/10.1007/s10802-017-0268-7 CrossRefGoogle ScholarPubMed
Guo, H., Duyzend, M. H., Coe, B. P., Baker, C., Hoekzema, K., Gerdts, J., Turner, T. N., Zody, M. C., Beighley, J. S., Murali, S. C., Nelson, B. J., Bamshad, M. J., Nickerson, D. A., Bernier, R. A., & Eichler, E. E. (2019). Genome sequencing identifies multiple deleterious variants in autism patients with more severe phenotypes. Genetics in Medicine, 21(7), 16111620. https://doi.org/10.1038/s41436-018-0380-2 CrossRefGoogle ScholarPubMed
Guo, H., Wang, T., Wu, H., Long, M., Coe, B. P., Li, H., Xun, G., Ou, J., Chen, B., Duan, G., Bai, T., Zhao, N., Shen, Y., Li, Y., Wang, Y., Zhang, Y., Baker, C., Liu, Y., Pang, N., …Duan, G. (2018). Inherited and multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial model. Molecular Autism, 9(1), 112. https://doi.org/10.1186/s13229-018-0247-z CrossRefGoogle ScholarPubMed
Häger, L. A., Åsberg Johnels, J., Kropotov, J. D., Weidle, B., Hollup, S., Zehentbauer, P. G., Gillberg, C., Billstedt, E., & Ogrim, G. (2021). Biomarker support for ADHD diagnosis based on Event Related Potentials and scores from an attention test. Psychiatry Research, 300, 113879. https://doi.org/10.1016/j.psychres.2021.113879 CrossRefGoogle ScholarPubMed
He, B. J., Zempel, J. M., Snyder, A. Z., & Raichle, M. E. (2010). The temporal structures and functional significance of scale-free brain activity. Neuron, 66(3), 353369. https://doi.org/10.1016/j.neuron.2010.04.020 CrossRefGoogle ScholarPubMed
Hill, A. T., Clark, G. M., Bigelow, F. J., Lum, J. A., & Enticott, P. G. (2022). Periodic and aperiodic neural activity displays age-dependent changes across early-to-middle childhood. Developmental Cognitive Neuroscience, 54, 101076. https://doi.org/10.1016/j.dcn.2022.101076 CrossRefGoogle ScholarPubMed
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., Sanislow, C., & Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167(7), 748751. https://doi.org/10.1176/appi.ajp.2010.09091379 CrossRefGoogle Scholar
Johnson, M. H. (2012). Executive function and developmental disorders: The flip side of the coin. Trends in Cognitive Sciences, 16(9), 454457. https://doi.org/10.1016/j.tics.2012.07.001 CrossRefGoogle ScholarPubMed
Jonkman, L., Kemner, C., Verbaten, M., Van Engeland, H., Camfferman, G., Buitelaar, J., & Koelega, H. (2000). Attentional capacity, a probe ERP study: Differences between children with attention-deficit hyperactivity disorder and normal control children and effects of methylphenidate. Psychophysiology, 37(3), 334346.CrossRefGoogle ScholarPubMed
Jonkman, L. M., Kemner, C., Verbaten, M. N., Koelega, H. S., Camfferman, G., v.d. Gaag, R-J., Buitelaar, J. K., & van Engeland, H. (1997). Event-related potentials and performance of attention-deficit hyperactivity disorder: Children and normal controls in auditory and visual selective attention tasks. Biological Psychiatry, 41(5), 595611. https://doi.org/10.1016/s0006-3223(96)00073-x CrossRefGoogle ScholarPubMed
Kaiser, A., Aggensteiner, P.-M., Baumeister, S., Holz, N. E., Banaschewski, T., & Brandeis, D. (2020). Earlier versus later cognitive event-related potentials (ERPs) in attention-deficit/hyperactivity disorder (ADHD): A meta-analysis. Neuroscience & Biobehavioral Reviews, 112, 117134. https://doi.org/10.1016/j.neubiorev.2020.01.019 CrossRefGoogle ScholarPubMed
Karalunas, S. L., Ostlund, B. D., Alperin, B. R., Figuracion, M., Gustafsson, H. C., Deming, E. M., Foti, D., Antovich, D., Dude, J., Nigg, J., & Sullivan, E. (2022). Electroencephalogram aperiodic power spectral slope can be reliably measured and predicts ADHD risk in early development. Developmental Psychobiology, 64(3), e22228. https://doi.org/10.1002/dev.22228 CrossRefGoogle ScholarPubMed
Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., Williamson, D., & Ryan, N. (1997). Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): Initial reliability and validity data. Journal of the American Academy of Child & Adolescent Psychiatry, 36(7), 980988. https://doi.org/10.1002/dev.22228 CrossRefGoogle ScholarPubMed
Kofler, M. J., Irwin, L. N., Soto, E. F., Groves, N. B., Harmon, S. L., & Sarver, D. E. (2019). Executive functioning heterogeneity in pediatric ADHD. Journal of Abnormal Child Psychology, 47(2), 273286. https://doi.org/10.1007/s10802-018-0438-2 CrossRefGoogle ScholarPubMed
Kouijzer, M. E., de Moor, J. M., Gerrits, B. J., Congedo, M., & van Schie, H. T. (2009). Neurofeedback improves executive functioning in children with autism spectrum disorders. Research in Autism Spectrum Disorders, 3(1), 145162. https://doi.org/10.1016/j.spen.2020.100832 CrossRefGoogle Scholar
Lendner, J. D., Helfrich, R. F., Mander, B. A., Romundstad, L., Lin, J. J., Walker, M. P., Larsson, P. G., & Knight, R. T. (2020). An electrophysiological marker of arousal level in humans. Elife, 9. https://doi.org/10.7554/eLife.55092 CrossRefGoogle ScholarPubMed
Levin, A., Méndez Leal, A., Gabard-Durnam, L., & O’Leary, H. (2018). BEAPP: The batch electroencephalography automated processing platform. Frontiers in Neuroscience, 12, 513. https://doi.org/10.3389/fnins.2018.00513 CrossRefGoogle ScholarPubMed
Loo, S. K., McGough, J. J., McCracken, J. T., & Smalley, S. L. (2018). Parsing heterogeneity in attention-deficit hyperactivity disorder using EEG-based subgroups. Journal of Child Psychology and Psychiatry, 59(3), 223231. https://doi.org/10.1111/jcpp.12814 CrossRefGoogle ScholarPubMed
Louthrenoo, O., Boonchooduang, N., Likhitweerawong, N., Charoenkwan, K., & Srisurapanont, M. (2021). The effects of neurofeedback on executive functioning in children with ADHD: A meta-analysis. Journal of Attention Disorders, 26(7), 976984. https://doi.org/10.1177/10870547211045738 CrossRefGoogle ScholarPubMed
Luo, Y., Weibman, D., Halperin, J. M., & Li, X. (2019). A review of heterogeneity in attention deficit/hyperactivity disorder (ADHD). Frontiers in Human Neuroscience, 13, 42. https://doi.org/10.3389/fnhum.2019.00042 CrossRefGoogle ScholarPubMed
Masumoto, K., Yamaguchi, M., Sutani, K., Tsuneto, S., Fujita, A., & Tonoike, M. (2006). Reactivation of physical motor information in the memory of action events. Brain Research, 1101(1), 102109. https://doi.org/10.1016/j.brainres.2006.05.033 CrossRefGoogle ScholarPubMed
McGrath, L. M., Pennington, B. F., Shanahan, M. A., Santerre-Lemmon, L. E., Barnard, H. D., Willcutt, E. G., DeFries, J. C., & Olson, R. K. (2011). A multiple deficit model of reading disability and attention-deficit/hyperactivity disorder: Searching for shared cognitive deficits. Journal of Child Psychology and Psychiatry, 52(5), 547557. https://doi.org/10.1111/j.1469-7610.2010.02346.x CrossRefGoogle ScholarPubMed
McGrath, L. M., Peterson, R. L., & Pennington, B. F. (2020). The multiple deficit model: Progress, problems, and prospects. Scientific Studies of Reading, 24(1), 713. https://doi.org/10.1080/10888438.2019.1706180 CrossRefGoogle Scholar
Muskens, J. B., Velders, F. P., & Staal, W. G. (2017). Medical comorbidities in children and adolescents with autism spectrum disorders and attention deficit hyperactivity disorders: A systematic review. European Child & Adolescent Psychiatry, 26(9), 10931103. https://doi.org/10.1007/s00787-017-1020-0 CrossRefGoogle ScholarPubMed
Nigg, J. T., Sibley, M. H., Thapar, A., & Karalunas, S. L. (2020). Development of ADHD: Etiology, heterogeneity, and early life course. Annual Review of Developmental Psychology, 2(1), 559583. https://doi.org/10.1146/annurev-devpsych-060320-093413 CrossRefGoogle ScholarPubMed
O'Halloran, C. J., Kinsella, G. J., & Storey, E. (2012). The cerebellum and neuropsychological functioning: A critical review. Journal of Clinical and Experimental Neuropsychology, 34(1), 3556. https://doi.org/10.1080/13803395.2011.614599 CrossRefGoogle ScholarPubMed
O'Hearn, K., Asato, M., Ordaz, S., & Luna, B. (2008). Neurodevelopment and executive function in autism. Development and psychopathology, 20(4), 11031132.CrossRefGoogle ScholarPubMed
Ostlund, B. D., Alperin, B. R., Drew, T., & Karalunas, S. L. (2021). Behavioral and cognitive correlates of the aperiodic (1/f-like) exponent of the EEG power spectrum in adolescents with and without ADHD. Developmental Cognitive Neuroscience, 48, 100931. https://doi.org/10.1016/j.dcn.2021.100931 CrossRefGoogle ScholarPubMed
Palva, J. M., & Palva, S. (2011). Roles of multiscale brain activity fluctuations in shaping the variability and dynamics of psychophysical performance. Progress in Brain Research, 193, 335350. https://doi.org/10.1016/B978-0-444-53839-0.00022-3 CrossRefGoogle ScholarPubMed
Pertermann, M., Bluschke, A., Roessner, V., & Beste, C. (2019). The modulation of neural noise underlies the effectiveness of methylphenidate treatment in attention-deficit/hyperactivity disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(8), 743750. https://doi.org/10.1016/j.bpsc.2019.03.011 Google ScholarPubMed
Polanczyk, G. V., Salum, G. A., Sugaya, L. S., Caye, A., & Rohde, L. A. (2015). Annual research review: A meta-analysis of the worldwide prevalence of mental disorders in children and adolescents. Journal of Child Psychology and Psychiatry, 56(3), 345365. https://doi.org/10.1111/jcpp.12381 CrossRefGoogle ScholarPubMed
Polich, J. (2012). Neuropsychology of P300. In The Oxford handbook of event-related potential components. Oxford Academic. https://doi.org/10.1093/oxfordhb/9780195374148.013.0089 Google Scholar
Riggins, T., & Scott, L. S. (2020). P300 development from infancy to adolescence. Psychophysiology, 57(7), e13346. https://doi.org/10.1111/psyp.13346 CrossRefGoogle ScholarPubMed
Robertson, M. M., Furlong, S., Voytek, B., Donoghue, T., Boettiger, C. A., & Sheridan, M. A. (2019). EEG power spectral slope differs by ADHD status and stimulant medication exposure in early childhood. Journal of Neurophysiology, 122(6), 24272437. https://doi.org/10.1152/jn.00388.2019 CrossRefGoogle ScholarPubMed
Ruchkin, D. S., Canoune, H. L., Johnson, R. Jr., & Ritter, W. (1995). Working memory and preparation elicit different patterns of slow wave event-related brain potentials. Psychophysiology, 32(4), 399410. https://doi.org/10.1111/j.1469-8986.1995.tb01223.x CrossRefGoogle ScholarPubMed
Schaworonkow, N., & Voytek, B. (2021). Longitudinal changes in aperiodic and periodic activity in electrophysiological recordings in the first seven months of life. Developmental Cognitive Neuroscience, 47, 100895. https://doi.org/10.1016/j.dcn.2020.100895 CrossRefGoogle ScholarPubMed
Sonuga-Barke, E. J. (2005). Causal models of attention-deficit/hyperactivity disorder: From common simple deficits to multiple developmental pathways. Biological Psychiatry, 57(11), 12311238. https://doi.org/10.1016/j.biopsych.2004.09.008 CrossRefGoogle ScholarPubMed
Sonuga-Barke, E. J., Auerbach, J., Campbell, S. B., Daley, D., & Thompson, M. (2005). Varieties of preschool hyperactivity: Multiple pathways from risk to disorder. Developmental Science, 8(2), 141150. https://doi.org/10.1111/j.1467-7687.2005.00401.x CrossRefGoogle ScholarPubMed
Squires, N. K., Squires, K. C., & Hillyard, S. A. (1975). Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalography and Clinical Neurophysiology, 38(4), 387401. https://doi.org/10.1016/0013-4694(75)90263-1 CrossRefGoogle ScholarPubMed
Steiner, N. J., Frenette, E. C., Rene, K. M., Brennan, R. T., & Perrin, E. C. (2014). In-school neurofeedback training for ADHD: Sustained improvements from a randomized control trial. Pediatrics, 133(3), 483492. https://doi.org/10.1542/peds.2013-2059 CrossRefGoogle ScholarPubMed
Sung, M. C., Ku, B., Leung, W., & MacDonald, M. (2021). The effect of physical activity interventions on executive function among people with neurodevelopmental disorders: A meta-analysis. Journal of Autism and Developmental Disorders, 52(3), 10301050. https://doi.org/10.1007/s10803-021-05009-5 CrossRefGoogle ScholarPubMed
Swanson, J. M., Schuck, S., Porter, M. M., Carlson, C., Hartman, C. A., Sergeant, J. A., Clevenger, W., Wasdell, M., McCleary, R., Lakes, K., & Wigal, T. (2012). Categorical and dimensional definitions and evaluations of symptoms of ADHD: History of the SNAP and the SWAN rating scales. The International Journal of Educational and Psychological Assessment, 10(1), 51.Google ScholarPubMed
Tomasino, B., Borroni, P., Isaja, A., & Ida Rumiati, R. (2005). The role of the primary motor cortex in mental rotation: A TMS study. Cognitive Neuropsychology, 22(3-4), 348363. https://doi.org/10.1016/j.bandc.2017.06.002 CrossRefGoogle ScholarPubMed
van Dinteren, R., Arns, M., Jongsma, M. L., & Kessels, R. P. (2014). P300 development across the lifespan: A systematic review and meta-analysis. PloS One, 9(2), e87347. https://doi.org/10.1371/journal.pone.0087347 CrossRefGoogle ScholarPubMed
Voytek, B., Kramer, M. A., Case, J., Lepage, K. Q., Tempesta, Z. R., Knight, R. T., & Gazzaley, A. (2015). Age-related changes in 1/f neural electrophysiological noise. Journal of Neuroscience, 35(38), 1325713265. https://doi.org/10.1523/JNEUROSCI.2332-14.2015 CrossRefGoogle ScholarPubMed
Webb, S., Borland, H., Santhosh, M., Naples, A., Levin, A., & Bernier, R. (2018). Data Acquisition and Analytic Core EEG Main Study Manual of Operations Version 2.2, Seattle, WA.Google Scholar
Wechsler, D. (2011). Wechsler abbreviated scale of intelligence second edition (WASI-II). Pearson.Google Scholar
Wechsler, D. (2014). Technical and interpretive manual. Pearson.Google Scholar
Willner, C. J., Gatzke-Kopp, L. M., Bierman, K. L., Greenberg, M. T., & Segalowitz, S. J. (2015). Relevance of a neurophysiological marker of attention allocation for children’s learning-related behaviors and academic performance. Developmental Psychology, 51(8), 11481162. https://doi.org/10.1037/a0039311 CrossRefGoogle ScholarPubMed
Zelazo, P. D. (2020). Executive function and psychopathology: A neurodevelopmental perspective. Annual Review of Clinical Psychology, 16(1), 431454. https://doi.org/10.1146/annurev-clinpsy-072319-024242 CrossRefGoogle ScholarPubMed
Supplementary material: File

Peisch and Arnett supplementary material

Peisch and Arnett supplementary material

Download Peisch and Arnett supplementary material(File)
File 18.1 KB