Skip to main content Accessibility help
Hostname: page-component-559fc8cf4f-lzpzj Total loading time: 0.33 Render date: 2021-03-01T13:37:58.803Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Gene × Environment contributions to autonomic stress reactivity in youth

Published online by Cambridge University Press:  17 December 2017

Andrea G. Allegrini
Vrije Universiteit Amsterdam
Brittany E. Evans
Radboud University
Susanne de Rooij
Vrije Universiteit Amsterdam Academic Medical Center of the University of Amsterdam
Kirstin Greaves-Lord
Erasmus University Medical Center
Anja C. Huizink
Vrije Universiteit Amsterdam
E-mail address:


Dysregulated physiological stress reactivity has been suggested to impact the development of children and adolescents with important health consequences throughout the life span. Both environmental adversity and genetic predispositions can lead to physiological imbalances in stress systems, which in turn lead to developmental differences. We investigated genetic and environmental contributions to autonomic nervous system reactivity to a psychosocial stressor. Furthermore, we tested whether these effects were consistent with the differential susceptibility framework. Composite measures of adverse life events combined with socioeconomic status were constructed. Effects of these adversity scores in interaction with a polygenic score summarizing six genetic variants, which were hypothesized to work as susceptibility factors, were tested on autonomic nervous system measures as indexed by heart rate and heart rate variability. Results showed that carriers of more genetic variants and exposed to high adversity manifested enhanced heart rate variability reactivity to a psychosocial stressor compared to carriers of fewer genetic variants. Conversely, the stress procedure elicited a more moderate response in these individuals compared to carriers of fewer variants when adversity was low.

Regular Articles
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below.


The Youth Research in The Netherlands (JOiN) study was conducted by the Erasmus University Medical Center, Department of Child and Adolescent Psychiatry/Psychology. We are grateful to all participants and their parents. We also thank Olga Husson for her assistance in data collection. The JOiN study was financially supported by ZonMW Grant 3116.0002 and ERAB Grant 0609.


Aftanas, L., Loktev, K., Miroshnikova, P., Gafarov, V., & Gromova, E. (2014). Polymorphism of dopamine transporter gene DAT1 and individual variability of defense cardiac response in humans. Bulletin of Experimental Biology and Medicine, 156, 845848.CrossRefGoogle ScholarPubMed
Alexander, N., Osinsky, R., Mueller, E., Schmitz, A., Guenthert, S., Kuepper, Y., & Hennig, J. (2011). Genetic variants within the dopaminergic system interact to modulate endocrine stress reactivity and recovery. Behavioural Brain Research, 216, 5358.CrossRefGoogle ScholarPubMed
Amone-P'Olak, K., Ormel, J., Huisman, M., Verhulst, F. C., Oldehinkel, A. J., & Burger, H. (2009). Life stressors as mediators of the relation between socioeconomic position and mental health problems in early adolescence: The TRAILS study. Journal of the American Academy of Child & Adolescent Psychiatry, 48, 10311038.CrossRefGoogle ScholarPubMed
Ansell, E. B., Rando, K., Tuit, K., Guarnaccia, J., & Sinha, R. (2012). Cumulative adversity and smaller gray matter volume in medial prefrontal, anterior cingulate, and insula regions. Biological Psychiatry, 72, 5764.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to rearing environment depending on dopamine-related genes: New evidence and a meta-analysis. Development and Psychopathology, 23, 3952.CrossRefGoogle ScholarPubMed
Baum, A., Garofalo, J., & Yali, A. (1999). Socioeconomic status and chronic stress: Does stress account for SES effects on health? Annals of the New York Academy of Sciences, 896, 131144.CrossRefGoogle Scholar
Beach, S. R., Lei, M. K., Brody, G. H., Simons, R. L., Cutrona, C., & Philibert, R. A. (2012). Genetic moderation of contextual effects on negative arousal and parenting in African-American parents. Journal of Family Psychology, 26, 46.CrossRefGoogle ScholarPubMed
Beauchaine, T. (2001). Vagal tone, development, and Gray's motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13, 183214. doi:10.1017/s0954579401002012.CrossRefGoogle ScholarPubMed
Belsky, J. (1997). Theory testing, effect-size evaluation, and differential susceptibility to rearing influence: The case of mothering and attachment. Child Development, 68, 598600.CrossRefGoogle ScholarPubMed
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304. doi:10.1111/j.1467-8721.2007.00525.x.CrossRefGoogle Scholar
Belsky, J., Newman, D. A., Widaman, K. F., Rodkin, P., Pluess, M., Fraley, R. C., … Roisman, G. I. (2015). Differential susceptibility to effects of maternal sensitivity? A study of candidate plasticity genes. Development and Psychopathology, 27, 725746.CrossRefGoogle ScholarPubMed
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908. doi:10.1037/a0017376.CrossRefGoogle ScholarPubMed
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57, 289300.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1991). Autonomic determinism—The modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychological Review, 98, 459487. doi:10.1037/0033-295x.98.4.459.CrossRefGoogle ScholarPubMed
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.CrossRefGoogle ScholarPubMed
Burgess, S., Butterworth, A., & Thompson, S. G. (2013). Mendelian randomization analysis with multiple genetic variants using summarized data. Genetic Epidemiology, 37, 658665.CrossRefGoogle ScholarPubMed
Burt, K. B., & Obradović, J. (2013). The construct of psychophysiological reactivity: Statistical and psychometric issues. Developmental Review, 33, 2957.CrossRefGoogle Scholar
Carpenter, L. L., Shattuck, T. T., Tyrka, A. R., Geracioti, T. D., & Price, L. H. (2011). Effect of childhood physical abuse on cortisol stress response. Psychopharmacology, 214, 367375.CrossRefGoogle ScholarPubMed
Casey, B. J., Jones, R. M., & Hare, T. A. (2008). The adolescent brain. Annals of the New York Academy of Sciences, 1124, 111126.CrossRefGoogle ScholarPubMed
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., … Poulton, R. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389. doi:10.1126/science.1083968.CrossRefGoogle ScholarPubMed
Champagne, F. A. (2013). Early environments, glucocorticoid receptors, and behavioral epigenetics. Behavioral Neuroscience, 127, 628636. doi:10.1037/a0034186.CrossRefGoogle ScholarPubMed
Chitbangonsyn, S. W., Mahboubi, P., Walker, D., Rana, B., Diggle, K., Timberlake, D., … O'Connor, D. (2003). Physical mapping of autonomic/sympathetic candidate genetic loci for hypertension in the human genome: A somatic cell radiation hybrid library approach. Journal of Human Hypertension, 17, 319324.CrossRefGoogle ScholarPubMed
Cicchetti, D., Rogosch, F. A., & Oshri, A. (2011). Interactive effects of CRHR1, 5-HTTLPR, and child maltreatment on diurnal cortisol regulation and internalizing symptomatology. Development and Psychopathology, 23, 1125.CrossRefGoogle ScholarPubMed
Clifford, S., & Lemery-Chalfant, K. (2015). Molecular genetics of resilience. In Pluess, M. (Ed.), Genetics of psychological well-being: The role of heritability and genetics in positive psychology. New York: Oxford University Press.Google Scholar
Del Giudice, M. (2017). Statistical tests of differential susceptibility: Performance, limitations, and improvements. Development and Psychopathology. Advance online publication. doi:10.1017/S0954579416001292.CrossRefGoogle ScholarPubMed
Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (2011). The adaptive calibration model of stress responsivity. Neuroscience & Biobehavioral Reviews, 35, 15621592.CrossRefGoogle ScholarPubMed
Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130, 355391. doi:10.1037/0033-2090.130.3.355CrossRefGoogle ScholarPubMed
Dieleman, G. C., van der Ende, J., Verhulst, F. C., & Huizink, A. C. (2010). Perceived and physiological arousal during a stress task: Can they differentiate between anxiety and depression? Psychoneuroendocrinology, 35, 12231234.CrossRefGoogle ScholarPubMed
Doom, J. R., & Gunnar, M. R. (2013). Stress physiology and developmental psychopathology: Past, present, and future. Development and Psychopathology, 25, 13591373. doi:10.1017/s0954579413000667.CrossRefGoogle ScholarPubMed
Dudbridge, F. (2013). Power and predictive accuracy of polygenic risk scores. PLOS Genetics, 9, e1003348.CrossRefGoogle ScholarPubMed
Eiland, L., & Romeo, R. D. (2013). Stress and the developing adolescent brain. Neuroscience, 249, 162171.CrossRefGoogle ScholarPubMed
Ellis, B. J., Essex, M. J., & Boyce, W. T. (2005). Biological sensitivity to context: II. Empirical explorations of an evolutionary-developmental theory. Development and Psychopathology, 17, 303328. doi:10.1017/s0954579405050157.CrossRefGoogle ScholarPubMed
Evans, B. E. (2013). Examining physiological stress (re)activity as an endophenotype for adolescent substance use (Doctoral dissertation, VU University Amsterdam).Google Scholar
Evans, B. E., Greaves-Lord, K., Euser, A. S., Tulen, J. H. M., Franken, I. H. A., & Huizink, A. C. (2013). Determinants of physiological and perceived physiological stress reactivity in children and adolescents. PlOS ONE, 8, e61724.CrossRefGoogle ScholarPubMed
Felitti, V. J., Anda, R. F., Nordenberg, D., Williamson, D. F., Spitz, A. M., Edwards, V., … Marks, J. S. (1998). Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults: The Adverse Childhood Experiences (ACE) Study. American Journal of Preventive Medicine, 14, 245258.CrossRefGoogle ScholarPubMed
Gatt, J., Nemeroff, C., Dobson-Stone, C., Paul, R., Bryant, R., Schofield, P., … Williams, L. (2009). Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Molecular Psychiatry, 14, 681695.CrossRefGoogle ScholarPubMed
Gunnar, M., Frenn, K., Wewerka, S. S., & van Ryzin, M. J. (2009). Moderate versus severe early life stress: Associations with stress reactivity and regulation in 10–12-year-old children. Psychoneuroendocrinology, 34, 6275.CrossRefGoogle ScholarPubMed
Gunnar, M., & Quevedo, K. (2007). The neurobiology of stress and development. Annual Review of Psychology, 58, 145173.CrossRefGoogle Scholar
Gunnar, M. R., & Vazquez, D. M. (2001). Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13, 515538. doi:10.1017/S0954579401003066.CrossRefGoogle Scholar
Gunnar, M. R., Wewerka, S., Frenn, K., Long, J. D., & Griggs, C. (2009). Developmental changes in hypothalamus–pituitary–adrenal activity over the transition to adolescence: Normative changes and associations with puberty. Development and Psychopathology, 21, 6985.CrossRefGoogle ScholarPubMed
Heim, C., Ehlert, U., & Hellhammer, D. H. (2000). The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology, 25, 135.CrossRefGoogle ScholarPubMed
Heleniak, C., McLaughlin, K. A., Ormel, J., & Riese, H. (2016). Cardiovascular reactivity as a mechanism linking child trauma to adolescent psychopathology. Biological Psychology, 120, 108119.CrossRefGoogle ScholarPubMed
Hugdahl, K. (Ed.) (1995). Psychophysiology: The mind-body perspective. Cambridge, MA: Harvard University Press.Google Scholar
Huizink, A. C., Greaves-Lord, K., Evans, B. E., Euser, A. S., van der Ende, J., Verhulst, F. C., & Franken, I. H. (2012). Youth in the Netherlands Study (JOiN): Study design. BMC Public Health, 12, 1.CrossRefGoogle ScholarPubMed
Jokela, M., Lehtimäki, T., & Keltikangas-Järvinen, L. (2007). The serotonin receptor 2A gene moderates the influence of parental socioeconomic status on adulthood harm avoidance. Behavior Genetics, 37, 567574.CrossRefGoogle ScholarPubMed
Keller, M. C. (2014). Gene × Environment interaction studies have not properly controlled for potential confounders: The problem and the (simple) solution. Biological Psychiatry, 75, 1824.CrossRefGoogle Scholar
Kirschbaum, C. (2010). Trier Social Stress Test. In Stolerman, I. P. (Ed.), Encyclopedia of psychopharmacology: Trier Social Stress Test. Berlin: Springer-Verlag.Google Scholar
Kirschbaum, C., Pirke, K.-M., & Hellhammer, D. H. (1993). The “Trier Social Stress Test”: A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28, 7681.CrossRefGoogle Scholar
Lovallo, W. R. (2005). Stress and health: Biological and psychological interactions. Thousand Oaks, CA: Sage.Google Scholar
Lovallo, W. R. (2010). Cardiovascular responses to stress and disease outcomes: A test of the reactivity hypothesis. Hypertension, 55, 842843.CrossRefGoogle ScholarPubMed
Lovallo, W. R. (2011). Do low levels of stress reactivity signal poor states of health? Biological Psychology, 86, 121128. doi:10.1016/j.biopsycho.2010.01.006.CrossRefGoogle ScholarPubMed
Lovallo, W. R. (2013). Early life adversity reduces stress reactivity and enhances impulsive behavior: Implications for health behaviors. International Journal of Psychophysiology, 90, 816. doi:10.1016/j.ijpsycho.2012.10.006.CrossRefGoogle ScholarPubMed
Lovallo, W. R., Farag, N. H., Sorocco, K. H., Acheson, A., Cohoon, A. J., & Vincent, A. S. (2013). Early life adversity contributes to impaired cognition and impulsive behavior: Studies from the Oklahoma Family Health Patterns Project. Alcoholism: Clinical and Experimental Research, 37, 616623.CrossRefGoogle ScholarPubMed
Lovallo, W. R., Farag, N. H., Sorocco, K. H., Cohoon, A. J., & Vincent, A. S. (2012). Lifetime adversity leads to blunted stress axis reactivity: Studies from the Oklahoma Family Health Patterns Project. Biological Psychiatry, 71, 344349. doi:10.1016/j.biopsych.2011.10.018.CrossRefGoogle ScholarPubMed
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434445. doi:10.1038/nrn2639.CrossRefGoogle ScholarPubMed
Manuck, S. B., Olsson, G., Hjemdahl, P., & Rehnqvist, N. (1992). Does cardiovascular reactivity to mental stress have prognostic value in postinfarction patients? A pilot study. Psychosomatic Medicine, 54, 102108.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87, 873904.CrossRefGoogle Scholar
McLaughlin, K. A. (2016). Future directions in childhood adversity and youth psychopathology. Journal of Clinical Child and Adolescent Psychology, 45, 361382.CrossRefGoogle ScholarPubMed
McLaughlin, K. A., Kubzansky, L. D., Dunn, E. C., Waldinger, R., Vaillant, G., & Koenen, K. C. (2010). Childhood social environment, emotional reactivity to stress, and mood and anxiety disorders across the life course. Depression and Anxiety, 27, 10871094.CrossRefGoogle ScholarPubMed
Middlebrooks, J. S., & Audage, N. C. (2008). The effects of childhood stress on health across the lifespan. Atlanta, GA: Centers for Disease Control and Prevention, National Center for Injury Prevention and Control.Google Scholar
Mueller, A., Strahler, J., Armbruster, D., Lesch, K.-P., Brocke, B., & Kirschbaum, C. (2012). Genetic contributions to acute autonomic stress responsiveness in children. International Journal of Psychophysiology, 83, 302308.CrossRefGoogle ScholarPubMed
Mulder, L. J. M., Van Dellen, H. J., van der Meulen, P., & Opheikens, B. (1988). CARSPAN: A spectral analysis program for cardiovascular time series. In Maarse, F. J., Mulder, L. J. M., & Akkerman, A. (Eds.), Computers in psychology: methods, instrumentation and psychodiagnostics (pp. 3947). Lisse: Swets and Zeitlinger.Google Scholar
Musante, L., Treiber, F. A., Kapuku, G., Moore, D., Davis, H., & Strong, W. B. (2000). The effects of life events on cardiovascular reactivity to behavioral stressors as a function of socioeconomic status, ethnicity, and sex. Psychosomatic Medicine, 62, 760767.CrossRefGoogle Scholar
National Scientific Council on the Developing Child. (2014). Excessive stress disrupts the architecture of the developing brain: Working Paper 3. Retreived from Scholar
Neijts, M., van Lien, R., Kupper, N., Boomsma, D., Willemsen, G., & de Geus, E. J. (2015). Heritability and temporal stability of ambulatory autonomic stress reactivity in unstructured 24-hour recordings. Psychosomatic Medicine, 77, 870881.CrossRefGoogle ScholarPubMed
Obradović, J. (2012). How can the study of physiological reactivity contribute to our understanding of adversity and resilience processes in development? Development and Psychopathology, 24, 371387.CrossRefGoogle Scholar
Obradović, J., & Boyce, W. T. (2009). Individual differences in behavioral, physiological, and genetic sensitivities to contexts: Implications for development and adaptation. Developmental Neuroscience, 31, 300308.Google ScholarPubMed
Obradović, J., Bush, N. R., Stamperdahl, J., Adler, N. E., & Boyce, W. T. (2010). Biological sensitivity to context: The interactive effects of stress reactivity and family adversity on socioemotional behavior and school readiness. Child Development, 81, 270289.CrossRefGoogle ScholarPubMed
Oldehinkel, A. J., Ormel, J., Bosch, N. M., Bouma, E. M. C., Van Roon, A. M., Rosmalen, J. G. M., & Riese, H. (2011). Stressed out? Associations between perceived and physiological stress responses in adolescents: The TRAILS study. Psychophysiology, 48, 441452. doi:10.1111/j.1469-8986.2010.01118.x.CrossRefGoogle ScholarPubMed
Pagliaccio, D., Luby, J. L., Bogdan, R., Agrawal, A., Gaffrey, M. S., Belden, A. C., … Barch, D. M. (2014). Stress-system genes and life stress predict cortisol levels and amygdala and hippocampal volumes in children. Neuropsychopharmacology, 39, 12451253.CrossRefGoogle ScholarPubMed
Phillips, A. C., Carroll, D., Ring, C., Sweeting, H., & West, P. (2005). Life events and acute cardiovascular reactions to mental stress: A cohort study. Psychosomatic Medicine, 67, 384392.CrossRefGoogle ScholarPubMed
Piccolo, L. d. R., Sbicigo, J. B., Grassi-Oliveira, R., & Fumagalli de Salles, J. (2014). Do socioeconomic status and stress reactivity really impact neurocognitive performance? Psychology and Neuroscience, 7, 567.CrossRefGoogle Scholar
Plomin, R. (2013). Child development and molecular genetics: 14 years later. Child Development, 84, 104120.CrossRefGoogle ScholarPubMed
Porges, S. W. (1995). Cardiac vagal tone: A physiological index of stress. Neuroscience & Biobehavioral Reviews, 19, 225233.CrossRefGoogle ScholarPubMed
Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74, 116143. doi:10.1016/j.biopsycho.2006.06.009.CrossRefGoogle ScholarPubMed
Roisman, G. I. (2007). The psychophysiology of adult attachment relationships: Autonomic reactivity in marital and premarital interactions. Developmental Psychology, 43, 39.CrossRefGoogle ScholarPubMed
Roisman, G. I., Newman, D. A., Fraley, R. C., Haltigan, J. D., Groh, A. M., & Haydon, K. C. (2012). Distinguishing differential susceptibility from diathesis–stress: Recommendations for evaluating interaction effects. Development and Psychopathology, 24, 389409.CrossRefGoogle ScholarPubMed
Shaffer, D., Fisher, P., Lucas, C. P., Dulcan, M. K., & Schwab-Stone, M. E. (2000). NIMH Diagnostic Interview Schedule for Children Version IV (NIMH DISC-IV): description, differences from previous versions, and reliability of some common diagnoses. Journal of the American Academy of Child & Adolescent Psychiatry, 39, 2838.CrossRefGoogle ScholarPubMed
Shaffer, F., McCraty, R., & Zerr, C. L. (2014). A healthy heart is not a metronome: An integrative review of the heart's anatomy and heart rate variability. Frontiers in Psychology, 5, 1040.CrossRefGoogle Scholar
Spear, L. P. (2009). Heightened stress responsivity and emotional reactivity during pubertal maturation: Implications for psychopathology. Development and Psychopathology, 21, 8797. doi:10.1017/s0954579409000066CrossRefGoogle ScholarPubMed
Sprangers, M. A., Thong, M. S., Bartels, M., Barsevick, A., Ordoñana, J., Shi, Q., … Singh, J. A. (2014). Biological pathways, candidate genes, and molecular markers associated with quality-of-life domains: An update. Quality of Life Research, 23, 19972013.CrossRefGoogle ScholarPubMed
Sripada, R. K., Swain, J. E., Evans, G. W., Welsh, R. C., & Liberzon, I. (2014). Childhood poverty and stress reactivity are associated with aberrant functional connectivity in default mode network. Neuropsychopharmacology, 39, 22442251.CrossRefGoogle ScholarPubMed
Stroud, L. R., Foster, E., Papandonatos, G. D., Handwerger, K., Granger, D. A., Kivlighan, K. T., & Niaura, R. (2009). Stress response and the adolescent transition: Performance versus peer rejection stressors. Development and Psychopathology, 21, 4768.CrossRefGoogle ScholarPubMed
Sumner, J. A., McLaughlin, K. A., Walsh, K., Sheridan, M. A., & Koenen, K. C. (2015). Caregiving and 5-HTTLPR genotype predict adolescent physiological stress reactivity: Confirmatory tests of Gene × Environment interactions. Child Development, 86, 985994.CrossRefGoogle ScholarPubMed
Tick, N. T., van der Ende, J., & Verhulst, F. C. (2007). Twenty-year trends in emotional and behavioral problems in Dutch children in a changing society. Acta Psychiatrica Scandinavica, 116, 473482. doi:10.1111/j.1600-0447.2007.01068.x.Google Scholar
Tyrka, A. R., Price, L. H., Gelernter, J., Schepker, C., Anderson, G. M., & Carpenter, L. L. (2009). Interaction of childhood maltreatment with the corticotropin-releasing hormone receptor gene: Effects on hypothalamic-pituitary-adrenal axis reactivity. Biological Psychiatry, 66, 681685.CrossRefGoogle ScholarPubMed
van Dijk, A. E., van Lien, R., van Eijsden, M., Gemke, R. J., Vrijkotte, T. G., & de Geus, E. J. (2013). Measuring cardiac autonomic nervous system (ANS) activity in children. Journal of Visualized Experiments, 74, e50073.Google Scholar
Van Steenis, H. G. (2002). On time-frequence analysis of heart rate variability. Unpublished manuscript, Erasmus University Rotterdam. Retrieved from Scholar
Van Steenis, H. G., Tulen, J. H. M., & Mulder, L. J. M. (1994). Heart-rate-variability spectra based on nonequidistant sampling—The spectrum of counts and the instantaneous heart-rate spectrum. Medical Engineering and Physics, 16, 355362. doi:10.1016/1350-4533(90)90001-o.CrossRefGoogle Scholar
Wray, N. R., Goddard, M. E., & Visscher, P. M. (2007). Prediction of individual genetic risk to disease from genome-wide association studies. Genome Research, 17, 15201528.CrossRefGoogle ScholarPubMed
Zuckerman, M. (1999). Vulnerability to psychopathology: A biosocial model. Washington, DC: American Psychological Association.Google Scholar

Allegrini et al. supplementary material

Tables S1-S2 and Figures S1-S3

File 76 KB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 35
Total number of PDF views: 271 *
View data table for this chart

* Views captured on Cambridge Core between 17th December 2017 - 1st March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Gene × Environment contributions to autonomic stress reactivity in youth
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Gene × Environment contributions to autonomic stress reactivity in youth
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Gene × Environment contributions to autonomic stress reactivity in youth
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *