Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T11:24:03.697Z Has data issue: false hasContentIssue false

On the Bateman–Horn conjecture for polynomials over large finite fields

Published online by Cambridge University Press:  21 September 2016

Alexei Entin*
Affiliation:
Department of Mathematics, Stanford University, 450 Serra Mall, Stanford, CA 94305-2125, USA email aentin@stanford.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove an analogue of the classical Bateman–Horn conjecture on prime values of polynomials for the ring of polynomials over a large finite field. Namely, given non-associate, irreducible, separable and monic (in the variable $x$) polynomials $F_{1},\ldots ,F_{m}\in \mathbf{F}_{q}[t][x]$, we show that the number of $f\in \mathbf{F}_{q}[t]$ of degree $n\geqslant \max (3,\deg _{t}F_{1},\ldots ,\deg _{t}F_{m})$ such that all $F_{i}(t,f)\in \mathbf{F}_{q}[t],1\leqslant i\leqslant m$, are irreducible is

$$\begin{eqnarray}\displaystyle \biggl(\mathop{\prod }_{i=1}^{m}\frac{\unicode[STIX]{x1D707}_{i}}{N_{i}}\biggr)q^{n+1}(1+O_{m,\,\max \deg F_{i},\,n}(q^{-1/2})), & & \displaystyle \nonumber\end{eqnarray}$$
where $N_{i}=n\deg _{x}F_{i}$ is the generic degree of $F_{i}(t,f)$ for $\deg f=n$ and $\unicode[STIX]{x1D707}_{i}$ is the number of factors into which $F_{i}$ splits over $\overline{\mathbf{F}}_{q}$. Our proof relies on the classification of finite simple groups. We will also prove the same result for non-associate, irreducible and separable (over $\mathbf{F}_{q}(t)$) polynomials $F_{1},\ldots ,F_{m}$ not necessarily monic in $x$ under the assumptions that $n$ is greater than the number of geometric points of multiplicity greater than two on the (possibly reducible) affine plane curve $C$ defined by the equation
$$\begin{eqnarray}\displaystyle \mathop{\prod }_{i=1}^{m}F_{i}(t,x)=0 & & \displaystyle \nonumber\end{eqnarray}$$
(this number is always bounded above by $(\sum _{i=1}^{m}\deg F_{i})^{2}/2$, where $\deg$ denotes the total degree in $t,x$) and
$$\begin{eqnarray}\displaystyle p=\text{char}\,\mathbf{F}_{q}>\max _{1\leqslant i\leqslant m}N_{i}, & & \displaystyle \nonumber\end{eqnarray}$$
where $N_{i}$ is the generic degree of $F_{i}(t,f)$ for $\deg f=n$.

Type
Research Article
Copyright
© The Author 2016 

References

Andrade, J. C., Bary-Soroker, L. and Rudnick, Z., Shifted convolutions and the Titchmarsh divisor problem over F q [t] , Philos. Trans. R. Soc. A 373 (2015), doi: 10.1098/rsta.2014.0308.Google Scholar
Bank, E. and Bary-Soroker, L., Prime polynomial values of linear functions in short intervals , J. Number Theory 151 (2015), 263275.Google Scholar
Bary-Soroker, L., Irreducible values of polynomials , Adv. Math. 229 (2012), 854874.Google Scholar
Bary-Soroker, L., Hardy–Littlewood tuple conjecture over large finite fields , Int. Math. Res. Not. IMRN 2014 (2014), 568575, doi: 10.1093/imrn/rns249.Google Scholar
Bary-Soroker, L. and Jarden, M., On the Bateman–Horn conjecture about polynomial rings , Münster J. Math. 5 (2012), 4158.Google Scholar
Bateman, P. T. and Horn, R. A., A heuristic asymptotic formula concerning the distribution of prime numbers , Math. Comput. 16 (1962), 363367.Google Scholar
Bender, A. O. and Pollack, P., On quantitative analogues of the Goldbach and twin prime conjectures over $\mathbf{F}_{q}[t]$ , Preprint (2009), arXiv:0912.1702 [math.NT].Google Scholar
Berlekamp, E. R., An analog to the discriminant over fields of characteristic two , J. Algebra 38 (1976), 315317.Google Scholar
Cameron, P. J., Permutation groups, London Mathematical Society Student Texts, vol. 45 (Cambridge University Press, 1999).Google Scholar
Carmon, D., The autocorrelation of the Möbius function and Chowla’s conjecture for the rational function field in characteristic 2 , Phil. Trans. R. Soc. A 373 (2015), doi: 10.1098/rsta.2014.0311.Google Scholar
Carmon, D. and Rudnick, Z., The autocorrelation of the Möbius function and Chowla’s conjecture for the rational function field , Q. J. Math. 65 (2014), 5361, doi: 10.1093/qmath/has047.Google Scholar
Chowla, S., The Riemann hypothesis and Hilbert’s tenth problem, Mathematics and its Applications, vol. 4 (Gordon & Breach, New York, 1965).Google Scholar
Conrad, B., Conrad, K. and Gross, R., Prime specialization in genus 0 , Trans. Amer. Math. Soc. 360 (2008), 28672908.Google Scholar
Dixon, J. D. and Mortimer, B., Permutation groups, Graduate Texts in Mathematics, vol. 163 (Springer, New York, 1996).CrossRefGoogle Scholar
Gelfand, I. M., Kapranov, M. M. and Zelevinsky, A. V., Discriminants, resultants and multidimensional determinants, Mathematics Theory and Applications (Birkhäuser, Boston, MA, 2014).Google Scholar
Goldschmidt, D. M., Algebraic functions and projective curves, Graduate Texts in Mathematics, vol. 215 (Springer, New York, 2003).Google Scholar
Hall, M., The theory of groups (Macmillan, New York, 1963).Google Scholar
Jacobson, N., Basic algebra II, 2nd edn (Freeman, New York, 1989).Google Scholar
Katz, N. M. and Sarnak, P., Random matrices, Frobenius eigenvalues, and monodromy, American Mathematical Society Colloquium Publications, vol. 45 (American Mathematical Society, Providence, RI, 1999).Google Scholar
Marker, D., Model theory: an introduction, Graduate Texts in Mathematics, vol. 217 (Springer, New York, 2002).Google Scholar
Pollack, P., Simultaneous prime specializations of polynomials over finite fields , Proc. Lond. Math. Soc. (3) 97 (2008), 545567.Google Scholar
Rudnick, Z., Square-free values of polynomials over the rational function field , J. Number Theory 135 (2014), 6066.Google Scholar
Grothendieck, A. et al. , SGA 1 – Revêtements étale et groupe fondamental, Lecture Notes in Mathematics, vol. 224 (Springer, Berlin, Heidelberg, 1971).Google Scholar
Swan, R. G., Factorization of polynomials over finite fields , Pacific J. Math. 12 (1962), 10991106.Google Scholar