Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-tqmtl Total loading time: 0.239 Render date: 2021-04-19T04:37:32.132Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Continued fractions with low complexity: transcendence measures and quadratic approximation

Published online by Cambridge University Press:  19 March 2012

Yann Bugeaud
Affiliation:
Mathématiques, Université de Strasbourg, 7, rue René Descartes, 67084 Strasbourg, France (email: bugeaud@math.unistra.fr)
Rights & Permissions[Opens in a new window]

Abstract

We establish measures of non-quadraticity and transcendence measures for real numbers whose sequence of partial quotients has sublinear block complexity. The main new ingredient is an improvement of Liouville’s inequality giving a lower bound for the distance between two distinct quadratic real numbers. Furthermore, we discuss the gap between Mahler’s exponent w2 and Koksma’s exponent w*2.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2012

References

[AB05]Adamczewski, B. and Bugeaud, Y., On the complexity of algebraic numbers, II. Continued fractions, Acta Math. 195 (2005), 120.CrossRefGoogle Scholar
[AB06]Adamczewski, B. and Bugeaud, Y., On the Littlewood conjecture in simultaneous Diophantine approximation, J. Lond. Math. Soc. (2) 73 (2006), 355366.CrossRefGoogle Scholar
[AB07a]Adamczewski, B. and Bugeaud, Y., Dynamics for β-shifts and Diophantine approximation, Ergodic Theory Dynam. Systems 27 (2007), 16951711.CrossRefGoogle Scholar
[AB07b]Adamczewski, B. and Bugeaud, Y., On the complexity of algebraic numbers I. Expansions in integer bases, Ann. of Math. (2) 165 (2007), 547565.CrossRefGoogle Scholar
[AB10a]Adamczewski, B. and Bugeaud, Y., Mesures de transcendance et aspects quantitatifs de la méthode de Thue–Siegel–Roth–Schmidt, Proc. Lond. Math. Soc. (3) 101 (2010), 131.CrossRefGoogle Scholar
[AB10b]Adamczewski, B. and Bugeaud, Y., Transcendence measures for continued fractions involving repetitive or symmetric patterns, J. Eur. Math. Soc. 12 (2010), 883914.CrossRefGoogle Scholar
[AB11]Adamczewski, B. and Bugeaud, Y., Nombres réels de complexité sous-linéaire: mesures d’irrationalité et de transcendance, J. Reine Angew. Math. 658 (2011), 6598.Google Scholar
[ABL04]Adamczewski, B., Bugeaud, Y. and Luca, F., Sur la complexité des nombres algébriques, C. R. Acad. Sci. Paris 339 (2004), 1114.CrossRefGoogle Scholar
[AC06]Adamczewski, B. and Cassaigne, J., Diophantine properties of real numbers generated by finite automata, Compositio Math. 142 (2006), 13511372.CrossRefGoogle Scholar
[AR09]Adamczewski, B. and Rivoal, T., Irrationality measures for some automatic real numbers, Math. Proc. Cambridge Philos. Soc. 147 (2009), 659678.CrossRefGoogle Scholar
[ADQZ01]Allouche, J.-P., Davison, J. L., Queffélec, M. and Zamboni, L. Q., Transcendence of Sturmian or morphic continued fractions, J. Number Theory 91 (2001), 3966.CrossRefGoogle Scholar
[AS03]Allouche, J.-P. and Shallit, J., Automatic sequences: theory, applications, generalizations (Cambridge University Press, Cambridge, 2003).CrossRefGoogle Scholar
[Bak64]Baker, A., On Mahler’s classification of transcendental numbers, Acta Math. 111 (1964), 97120.CrossRefGoogle Scholar
[Bak76]Baker, R. C., On approximation with algebraic numbers of bounded degree, Mathematika 23 (1976), 1831.CrossRefGoogle Scholar
[Bug03]Bugeaud, Y., Mahler’s classification of numbers compared with Koksma’s, Acta Arith. 110 (2003), 89105.CrossRefGoogle Scholar
[Bug04a]Bugeaud, Y., Approximation by algebraic numbers, Cambridge Tracts in Mathematics, vol. 160 (Cambridge University Press, Cambridge, 2004).CrossRefGoogle Scholar
[Bug04]Bugeaud, Y., Mahler’s classification of numbers compared with Koksma’s, III, Publ. Math. Debrecen 65 (2004), 305316.Google Scholar
[Bug08]Bugeaud, Y., Diophantine approximation and Cantor sets, Math. Ann. 341 (2008), 677684.CrossRefGoogle Scholar
[Bug]Bugeaud, Y., On the rational approximation to the Thue–Morse–Mahler numbers, Ann. Inst. Fourier., to appear.Google Scholar
[Bug10]Bugeaud, Y., Continued fractions of transcendental numbers, Preprint (2010), arXiv:1012.1709.Google Scholar
[BKS11]Bugeaud, Y., Krieger, D. and Shallit, J., Morphic and automatic words: maximal blocks and diophantine approximation, Acta Arith. 149 (2011), 181199.CrossRefGoogle Scholar
[BL05]Bugeaud, Y. and Laurent, M., Exponents of Diophantine approximation and Sturmian continued fractions, Ann. Inst. Fourier (Grenoble) 55 (2005), 773804.CrossRefGoogle Scholar
[Cob68]Cobham, A., On the Hartmanis–Stearns problem for a class of tag machines, in Conference record of 1968 ninth annual symposium on switching and automata theory, Schenectady, NY, 1968, 51–60.Google Scholar
[Cob72]Cobham, A., Uniform tag sequences, Math. Systems Theory 6 (1972), 164192.CrossRefGoogle Scholar
[DS67]Davenport, H. and Schmidt, W. M., Approximation to real numbers by quadratic irrationals, Acta Arith. 13 (1967), 169176.CrossRefGoogle Scholar
[Eil74]Eilenberg, S., Automata, languages, and machines, Vol. A, Pure and Applied Mathematics, vol. 58 (Academic Press, New York, 1974).Google Scholar
[Eve96]Evertse, J.-H., An improvement of the quantitative subspace theorem, Compositio Math. 101 (1996), 225311.Google Scholar
[Kok39]Koksma, J. F., Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen, Monatsh. Math. Phys. 48 (1939), 176189.CrossRefGoogle Scholar
[Mah32]Mahler, K., Zur Approximation der Exponentialfunktionen und des Logarithmus. I, II, J. Reine Angew. Math. 166 (1932), 118150.Google Scholar
[MH38]Morse, M. and Hedlund, G. A., Symbolic dynamics, Amer. J. Math. 60 (1938), 815866.CrossRefGoogle Scholar
[MH40]Morse, M. and Hedlund, G. A., Symbolic dynamics II, Amer. J. Math. 62 (1940), 142.CrossRefGoogle Scholar
[Mos92]Mossé, B., Puissances de mots et reconnaissabilité des points fixes d’une substitution, Theoret. Comput. Sci. 99 (1992), 327334.CrossRefGoogle Scholar
[Per29]Perron, O., Die Lehre von den Ketterbrüchen (Teubner, Leipzig, 1929).Google Scholar
[Que98]Queffélec, M., Transcendance des fractions continues de Thue–Morse, J. Number Theory 73 (1998), 201211.CrossRefGoogle Scholar
[Que00]Queffélec, M., Irrational numbers with automaton-generated continued fraction expansion, in Dynamical systems (Luminy-Marseille, 1998) (World Scientific Publishing, River Edge, NJ, 2000), 190198.CrossRefGoogle Scholar
[Sch67]Schmidt, W. M., On simultaneous approximations of two algebraic numbers by rationals, Acta Math. 119 (1967), 2750.CrossRefGoogle Scholar
[Sch71]Schmidt, W. M., Mahler’s T-numbers, in 1969 Number Theory Institute – Proceedings of Symposia in Pure Mathematics, Vol. XX, State Univ. New York, Stony Brook, NY, 1969 (American Mathematical Society, Providence, RI, 1971), 275286.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 115 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 19th April 2021. This data will be updated every 24 hours.

You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Continued fractions with low complexity: transcendence measures and quadratic approximation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Continued fractions with low complexity: transcendence measures and quadratic approximation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Continued fractions with low complexity: transcendence measures and quadratic approximation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *